
CSCI 5440: Cryptography Lecture 7
The Chinese University of Hong Kong 2 March 2011

1 Hardcore bits

To motivate the construction of pseudorandom generators from one-way permutations, we start
with the observation that since f : {0, 1}n → {0, 1}n is a permutation, the distribution f(x) when
x is random is already uniform. To get a pseudorandom generator, it is therefore sufficient to find
just one more bit h(x) so that (f(x), h(x)) is pseudorandom.

To understand what this h(x) should look like, let us go back to the definition of pseudorandom
generator. The definition requires that for every distinguisher D of size s′,∣∣Prx∼{0,1}n [D(f(x), h(x)) = 1]− Pry∼{0,1}n+1 [D(y) = 1]

∣∣ ≤ ε.
Since f(x) is uniformly distributed, we can rewrite this as∣∣Prx∼{0,1}n [D(f(x), h(x)) = 1]− Prx∼{0,1}n,b∼{0,1}[D(f(x), b) = 1]

∣∣ ≤ ε.
This equation says that given f(x), D is just about as likely to output 1 when its second input
is f(x) as when it is a completely random bit. Intutively, this means f(x) should give almost no
information about the value h(x). Such a function f is called a hardcore bit for f .

Definition 1. Let f : {0, 1}n → {0, 1}n be a function and h : {0, 1}n → {0, 1} be a predicate. We
say h is an (s, ε) hardcore bit for f if for every circuit P of size s (called a predictor)

Prx∼{0,1}n [P (f(x)) = h(x)] ≤ 1/2 + ε.

We now formalize the discussion that in order to construct a pseudorandom generator, it is sufficient
to have a hardcore bit. The proof is unfortunately somewhat technical, and I don’t know of a very
intuitive way to present it.

Claim 2. Suppose f is a permutation and h is an (s, ε) hardcore bit for f . Then (f(x), h(x)) is
an (s−O(1), ε) pseudorandom generator.

Proof. Suppose (f(x), h(x)) is not an (s, ε) pseudorandom generator. By our previous discussion,
there is a circuit D of size s so that∣∣Prx∼{0,1}n [D(f(x), h(x)) = 1]− Prx∼{0,1}n,b∼{0,1}[D(f(x), b) = 1]

∣∣ > ε.

Let us remove the absolute value (by possibly adding a negation gate at the output of D) and
introduce the shorthand notation Dx(a) = D(f(x), a). With this notation, we have

Prx,b[Dx(b) = 1]− Prx,b[Dx(h(x)) = 1] > ε.

Since Dx(b) is Dx(h(x)) with probability 1/2 and Dx(h(x)) with the remaining probability, we have

1

2
Prx[Dx(h(x)) = 1]− 1

2
Prx[Dx(h(x)) = 1] > ε.

1

Using the relation E[(−1)Z] = 1− 2 Pr[Z = 1], true for every random variable Z that takes values
−1 and 1, we can rewrite this as

1

2
Ex[(−1)Dx(h(x))]− 1

2
Ex[(−1)Dx(h(x))] > 2ε.

From where we get that
Ex,b[(−1)Dx(b)+b+h(x)] > 2ε.

(If b = h(x), we get the first term, and otherwise we get the other term.) This expression says
that Dx(b) + b as a random function in x correlates with h(x), so it suggests using the following
predictor P :

P : On input f(x), choose a random b ∼ {0, 1} and output the bit D(f(x), b) + b.

Then E[(−1)P (f(x))+h(x)] > 2ε, and by using the relation E[(−1)Z] = 2 Pr[Z = 0]− 1, we get that

Pr[P (f(x)) = h(x)] = Pr[P (f(x)) + h(x) = 0] =
1

2
+

1

2
E[(−1)P (f(x))+h(x)] >

1

2
+ ε

contradicting the assumption that h is an (s, ε) hardcore bit for f .

We are now left with the task of constructing a hardcore bit for f . How should we go about this?
Without any information about f – apart from the fact that it is a one-way permutation – it makes
sense to try and choose some predicate that depends on all the bits of f , for it could be that f is
designed in such a way that part of its input gets simply copied in the output, so we do not want
to be too dependent on any specific bit. This suggests that perhaps taking the XOR of all the
bits of x would be a hardcore bit for f . However, this is incorrect: It turns out that if one-way
permutations exist, then there are also one-way permutations where, say, the first output equals
the XOR of all the input bits.

2 The Goldreich-Levin theorem

The amazing insight of Goldreich and Levin is that this problem can be avoided by randomizing the
hardcore bit. Specifically, they suggest the following construction. Given a one-way permutation
f : {0, 1}n → {0, 1}n, it is easy to see that the function (x, r)→ (f(x), r), where r ∈ {0, 1}n is also
a one-way permutation. Then

Theorem 3. (Goldreich-Levin theorem) If f is a (s, ε) one-way permutation, then the predicate
hS(x, r) = 〈x, r〉 is an (s · (ε/n)O(1), O(ε)) hardcore bit for the permutation (f(x), r), where

〈x, r〉 = x1r1 + · · ·+ xnrn mod 2.

The proof of this theorem goes by contradiction. Let s′ = s · (ε/n)O(1) and ε′ = O(ε) and let’s
assume that 〈x, r〉 is not (s′, ε′) hardcore for (f(x), r). Then there is a predictor P for which

Prx,r [P (f(x), r) = 〈x, r〉] > 1

2
+ ε.

2

It follows that

Prx

[
Prr [P (f(x), r) = 〈x, r〉] > 1

2
+
ε

2

]
>
ε

2

Let S be the set of all x such that

Prr [P (f(x), r) = 〈x, r〉] > 1

2
+
ε

2
(1)

This suggests the following algorithm for inverting f(x) when x ∈ S: On input z = f(x), try to
find all x′ such that Prr [P (z, r) = 〈x′, r〉] > 1/2 + ε/2. Since x satisfies (1), one of these x′ must
equal x. To find out which one, apply f to all of them and see which one maps to z. Since f is a
permutation, if f(x′) = z it must be that x′ = x.

Can we implement this algorithm efficiently? At first, the idea seems unreasonable: It looks like
there might be exponentially many x′ such that Prr [P (z, r) = 〈x′, r〉] > 1/2 + ε/2, so even listing
all of them, much less computing them, may take too much time. However, this is not the case,
and the search of x′ can be carried out in polynomial-time:

Lemma 4. There is a randomized algorithm A? which on input ε and given oracle access to
g : {0, 1}n → {0, 1} runs in time (s/ε)O(1) and with probability 2/3 outputs a list that contains all
x such that

Prr [g(r) = 〈x, r〉] ≥ 1

2
+ ε.

The proof of the Goldreich-Levin theorem makes use of the Chebyshev and Chernoff large deviation
inequalities, which are stated in the appendix.

3 Proof of the Goldreich-Levin theorem

We will start by proving a much weaker statement than what is required, and strenghten it in
stages to derive the proof of the theorem. Our goal is to design an algorithm A that outputs all x
such that

Prr [g(r) = 〈x, r〉] ≥ p.

where p = 1/2 + ε. Let us however start with the case p = 1.

Case p = 1. In this case, A can evaluate g(r) = 〈x, r〉 for every r and wants to “recover” x. It is
not hard to see that g uniquely determines x, and the ith bit of x is given by xi = 〈x, ei〉 = g(ei),
where ei is the string that has 1 in the ith coordinate and 0 everywhere else. So in this way we can
recover x bit by bit.

Case p = 1− 1
6n . Now we need to work a bit harder, since it might be the case that g(ei) 6= 〈x, ei〉,

so querying g at ei might be misleading. But we can deduce the value 〈x, ei〉 by querying g at two
random but correlated points: We know that for every r, xi = 〈x, ei〉 = 〈x, r〉+〈x, r+ei〉. Moreover,
for a random r, the strings r and r + ei are both uniformly random in {0, 1}n. So, if we choose a
random r and compute g(r) + g(ei + r), we have that

Prr[g(r) + g(ei + r) 6= xi] ≤ Prr[g(r) 6= 〈x, r〉] + Prr[g(ei + r) 6= 〈x, ei + r〉] < 1

6n
+

1

6n
<

1

3n

3

By taking a union bound, we have that Prr[∃i : g(ei + r) + g(r) 6= xi] <
1
3 . So with probability 2/3

this randomized algorithm recovers all the bits of x.

Case p = 3
4 + ε. In the above algorithm, we now have that

Prr[g(r) + g(ei + r) 6= xi] ≤ Prr[g(r) 6= 〈x, r〉] + Prr[g(ei + r) 6= 〈x, ei + r〉] < 2(1/4− ε) < 1/2− 2ε.

We cannot take a union bound of n such events anymore. However, by repeating this procedure
several times, we can increase its success probability from 1/2−2ε to 1/3n, and then take the union
bound.

In particular, consider the following algorithm: For each 1 ≤ i ≤ n, compute the value g(r)+g(ei+r)
for t = O(log n/ε2) independent values of r and let xi equal the majority of the answers. Each trial
gives the correct value for xi with probability 1/2 − 2ε and the trials are independent, so by the
Chernoff bound the probability that a majority of the trials fails is at most exp((2ε)2t/2) < 1/3n.

Case p = 1/2 + ε. We now give the proof of the theorem. It turns out that an interesting
phenomenon happens when we try to take p ≤ 3/4. By the analysis of the previous case, it follows
that when p > 3/4, there is a unique x such that Pr[g(r) = 〈x, r〉] ≥ p. However, when p ≤ 3/4,
there may be two or more such xs. So we must introduce a way into the algorithm to disambiguate
between the different solutions.

There is also an evident (and related) problem with the above analysis: If we attempt to use the
same algorithm, we would get that Pr[g(r) + g(ei + r) 6= xi] < 1− 2ε, so it appears that we do not
obtain any information about the value xi.

However, suppose that someone could tell us the values hr = 〈x, r〉 needed by the algorithm, so we
wouldn’t have to query g to get them and make potential mistakes. Then we would have

Prr[hr + g(ei + r) 6= xi] ≤ Prr[g(ei + r) 6= 〈x, ei + r〉] < 1/2− ε. (2)

so the previous algorithm would work – provided that we knew the values hr = 〈x, r〉.

How can we get hold of the values hr? One possibility is to simply guess them, and think of each
possible guess as giving a candidate value for x. So to obtain a list of all x, one can simply go
through all the choices for hr. How many such choices are there? For each i, the algorithm uses
O(log n/ε2) choices of r, and there are n possible values of i, so we need to guess O(n log n/ε2)
different values hr. It looks like going through all the choices would take time exponential in n!

One place in the algorithm where we can save immediately is this: Instead of using independent
choices of r for the different coordinates i, we can in fact make the same choices. In the end, our
analysis works by taking a union bound over i, so it does not matter if the randomness used for
different coordinates is the same. This will reduce the number of random strings r needed by the
algorithm to O(log n/ε2), so the number of possible choices for hr becomes 2O(logn/ε2) = nO(1/ε2).
This is too large, as we usually think of ε as being inverse polynomial in n.

To further improve the algorithm, we introduce additional correlations among the rs. To amplify
the success probability of (2) from 1/2 + ε to 1 − 1/3n, it is not really necessary that the rs are
independent. It turns out that we can choose them in a dependent way so that we only need to
guess the value hr for a very small number of r, and this will automatically yield guesses for the
other rs.

4

We choose the rs from the following distribution: First, choose a “basis” r1, . . . , rm ∼ {0, 1}n
independently at random, where m = log2O(n/ε2). Then, for every subset S ⊆ {1, . . . ,m}, set
rS =

∑
j∈S rj . Notice that guesses hj for the values 〈x, rj〉 automatically yield guesses hS for the

values 〈x, rS〉 via the formula 〈x, rS〉 =
∑

j∈S〈x, rj〉.

We can now give the algorithm A from the theorem:

Ag: Choose r1, . . . , rm independently at random from {0, 1}n.
For every choice of values h1, . . . , hm ∈ {0, 1}:

For every 1 ≤ i ≤ n:
For every S ⊆ {1, . . . ,m}, S 6= ∅:

Set rS =
∑

j∈S ri and hS =
∑

j∈S hj .

Compute ai,S = hS + g(ei + rS).
Set xi = majorityS(ai,S).

Output x = x1 . . . xn.

We choose m = log2(6n/ε
2), so the number of possible choices for h1, . . . , hm is 6n/ε2 and the

running time of the algorithm is polynomial in n and 1/ε.

Claim 5. For every x such that Prr[g(r) = 〈x, r〉] ≥ 1/2 + ε, with probability 2/3 over the choice
of r1, . . . , rm, A

g outputs x.

This claim almost proves the Goldreich-Levin theorem. The only difference is that it only guarantees
each x satisfying the condition will appear in the list with probability 2/3, while the theorem says
that the list contains all such x with probability 2/3. To take care of this, we run the algorithm n
times and take the union of all the lists output by it. Then each such x will appear in the list with
probability 1− 3−n, so by a union bound the list will contain all such x with probability 2/3.

Proof. We will show that Ag outputs x when hi = 〈x, rj〉 for all 1 ≤ j ≤ m, which also implies
hS = 〈x, rS〉 for every S ⊆ {1, . . . ,m}. Let us fix this choice for hi. As before, is enough to show
that for all i,

Prr
[
majorityS(hS + g(ei + rS)) = xi

]
> 1− 1

3n
.

Let

YS =

{
1, if hS + g(ei + rS) = xi,

0, otherwise.

Then for every S,

Pr[YS = 1] = Pr[hS + g(ei + rS) = xi] = Pr[g(ei + rS) = 〈x, ei + rS〉] ≥
1

2
+ ε

The main observation here is that the random variables YS are pairwise independent, since the
variables rS are pairwise independent and YS is determined by rS . We can therefore use Chebyshev’s
inequality to obtain a deviation bound on Y =

∑
S⊆{0,1}m YS . Let us assume for simplicity that

Pr[YS = 1] = 1/2 + ε. Then

E[Y] =
∑

S⊆{0,1}m
E[YS] = (1/2 + ε) · 2m and Var[Y] =

∑
S⊆{0,1}m

Var[YS] ≤ 2m.

5

By Chebyshev’s inequality, we have

Pr[xi 6= majorityS(ai,S)] ≤ Pr
[
Y < E[Y]− ε · 2m

]
≤ Pr

[
Y < E[Y]− ε · 2m/2 ·

√
Var[Y]

]
≤ 1

(ε · 2m/2)2
<

1

3n
.

A Large deviation inequalities

Recall the variance of a random variable X is given by the formula

Var[X] = E[X2]− E[X]2 = E[(X − E[X])2].

Let X1, . . . , Xm. Large deviation inequalities give tail bounds on the distribution of X = X1 +
· · ·+Xm. Recall that X1, . . . , Xm are pairwise independent if for every pair i 6= j, Xi and Xj are
statistically independent. If X1, . . . , Xm are pairwise independent, then

Var[X] = Var[X1] + · · ·+ Var[Xm].

However, this is not true in general. Chebyshev’s inequality gives deviation bounds on the random
variable X. It always holds, but it is most useful when X is a sum of pairwise independent random
variables (or almost so):

Theorem 6 (Chebyshev inequality). For every random variable X

Pr
[
|X − E[X]| ≥ t

√
Var[X]

]
≤ 1

t2
.

The Chernoff inequality gives a sharper bound, but under the restriction that the Xi are indepen-
dent and take 0, 1 values:

Theorem 7 (Chernoff bound). Let X1, . . . , Xn be independent identically distributed random vari-
ables that take value 0 or 1, and X = X1 + · · ·+Xn. Then

Pr
[
X ≥ E[X] + εn

]
≤ e−2ε2n.

There are even sharper versions of this inequality, and also a corresponding bound on the left tail
of X, but we won’t need them here.

6

	Hardcore bits
	The Goldreich-Levin theorem
	Proof of the Goldreich-Levin theorem
	Public-key encryption
	El Gamal encryption
	Large deviation inequalities

