Please list your collaborators and provide any references that you may have used in your solutions.

Question 1

Consider the following encryption algorithm based on the shortLWE assumption. The secret key is a shortLWE secret $x \sim \nu^n$ and the public key is PK = (A, Ax + e), where A is a random $n \times n$ matrix over \mathbb{Z}_q and $e \sim \nu^n$. The encryption of a message represented by $M \in \mathbb{Z}_q$ under public key PK = (A, b) is

 $Enc(PK, M) = (e' + x'A, e'' + x'b + M), \qquad x' \sim \nu^n, e' \sim \nu^n, e'' \sim \nu.$

(A is a matrix, x, e, b are column vectors, x', e' are row vectors, and e'', M are scalars.)

- (a) Give the corresponding decryption algorithm. Show that the scheme is functional assuming that the message is encoded in the $\log q \log n 2 \log b O(1)$ most significant bits of M.
- (b) Prove that the scheme is (s', ε') -message simulatable under the (s, ε) -shortLWE assumption. (Calculate the dependence of s' and ε' on s, ε , and other relevant parameters.)

Question 2

In this question you will analyze the following LWE-based public-key identification protocol. The secret key is a random $x \sim \{-1, 1\}^m$. The public key is (A, xA) where A is a random $m \times n$ matrix over \mathbb{Z}_q . All arithmetic is modulo q.

- 1. Prover chooses a random $r \sim \{-b, \ldots, b\}^m$ and sends rA.
- 2. Verifier sends a random bit $c \sim \{0, 1\}$.
- 3. Prover sends r + cx.
- (a) Show that if m = 1 then conditioned on $|r + x| \le b 1$, r and r + x are identically distributed.
- (b) Now let m be arbitrary as in the protocol. Show that r and r + x are O(m/b)-statistically close.
- (c) Show that the view of an eavesdropper who sees q' protocol transcripts is O(q'n/b)-statistically close to some random variable that can be efficiently sampled by a simulator that is given only the public key.
- (d) Let $h_A(x) = xA$, where the entries of x are of magnitude at most 2(b+1). Show that if h is a collisionresistant hash function then no efficient cheating prover can handle both challenges c = 0 and c = 1. Conclude that, if repeated sufficiently many times, the protocol is secure against eavesdropping. (Work out the dependences between the security parameters.)
- (e) **(Optional)** Prove that the protocol is secure against impersonation.

Question 3

In this question you will show that using an obfuscator, an adversary can plant a collision in a hash function that makes it insecure against him, but secure against everyone else. Let $h: \{0,1\}^m \to \{0,1\}^n$ be a collision-resistant hash, Obf an obfuscator, and A the following algorithm:

- 1. Sample a random key K and a random input $\hat{x} \sim \{0, 1\}^m \setminus \{0\}$.
- 2. Construct a circuit h' that implements the function

$$h'(x) = \begin{cases} h_K(0), & \text{if } x = \hat{x}, \\ h_K(x), & \text{if not.} \end{cases}$$

3. Output H = Obf(h').

Then A knows a collision for H, namely the pair $(0, \hat{x})$. We can view H both as a random key and the function described by it, so (s, ε) -collision-resistance means that the probability that C(H) outputs a collision for H is at most ε for every C of size at most s.

- (a) Show that the views D^{h_K} and $D^{h'}$ are $q/(2^m 1)$ -statistically close for any distinguisher D that makes at most q queries to its oracle.
- (b) Show that if h is (s, ε) -collision resistant and Obf is $(s + 2t + O(n), \varepsilon')$ -VBB secure, H is $(s tt', \varepsilon + \varepsilon' + q/(2^m 1))$ -collision resistant, where t and t' are the sizes h and the VBB simulator, respectively.
- (c) Show that the MAC from Theorem 5 in Lecture 6 is insecure against a forger that knows \hat{x} .

Question 4

Bob has some database D that Alice wants to query, but she suspects that Bob might not give her correct answers. To ensure integrity Alice also has a short collision-resistant hash h(D) of the database. When Alice wants to retrieve the contents D(r) of database row r, Bob sends Alice the whole database D and she can verify that the hash is correct. This is impractical when the database is large. In this problem you will model this scenario cryptographically and explore a more efficient solution based on Merkle trees.

A database is a function $D: \{1, \ldots, R\} \to \{0, 1\}^n$ that maps a row x to a data item D(x). A database commitment protocol has the following format. Alice has no input and Bob's input is the database D. In the setup phase, Bob sends Alice a commitment com to the database. In the query phase,

- 1. Alice sends a query $x \in \{1, \ldots, R\}$ of her choice to Bob.
- 2. Bob returns an answer y = D(x) and a certificate cert.
- 3. Upon receiving y and *cert*, Alice runs a verification which accepts or rejects.

The functionality requirement is that when Bob is honest Alice accepts with probability 1.

- (a) Give a definition of (s, ε) -security. The adversary is a cheating Bob.¹ You may assume the availability of a random public key K available to all the parties (as in the collision-resistant hash setup).
- (b) Let $com = h_K(D)$ and cert = D where h is a collision-resistant hash function. Describe the verification and prove that the protocol is secure.
- (c) The certificate in part (b) is nR-bits long. Now assume h is the Merkle tree-based collision resistant hash of depth log R from Lecture 6. Describe a different certificate of length $n(\log R + 1)$, the corresponding verification, and prove that the protocol is secure. (**Hint:** It is sufficient for Bob to reveal the hashes at log R + 1 nodes in the Merkle tree.)

¹There is no need for a "learning phase" as there is no secret information to be learned.