
CSCI 5440: Cryptography Lecture 8
The Chinese University of Hong Kong, Spring 2018 5 and 6 March 2018

In Lecture 7 we described a protocol for two-party computation that is secure against honest-but-
curious parties: No information is leaked beyond what is intended assuming both Alice and Bob
follow the rules of the protocol. Information leakage can happen if, say, Bob deviates from his
instructions. For example, in the AND protocol if Bob’s input is zero he is required to generate a
public key for encryption without knowing the corresponding secret key so that he cannot decrypt
Alice’s input. What is to prevent a cheating Bob from doing this?

It appears that we have to go back to the drawing board and redo the protocols so they are secure
against such attacks. Fortunately we are doing theoretical cryptography and there is another way.
We will describe a general-purpose “compiler” that turns any two-party computation that is secure
against honest-but-curious parties into one that is secure against malicious parties that might not
follow the protocol instructions.

The idea is deceptively naive: In addition to running the protocol, Alice and Bob prove to each
other that they followed the instructions. For example, in the AND protocol Alice is supposed to
send Bob the encryption of her input x under Bob’s public key. Alice will accompany this message
with a proof that the message C = Enc(PK, x) is indeed an encryption of x under PK. She can
prove this by revealing x and the randomness R she used and then Bob can check that C is indeed
an encryption of x with randomness R. But revealing x (and R) breaks the simulatability of the
protocol: This is precisely the information that Bob should not find out.

There is another type of proof, called a zero-knowledge proof, by which Alice can convince Bob
that statements like “C is an encryption of my input under PK” are true without revealing any
additional information to Bob. Let’s start with a non-cryptographic example.

1 Graph isomorphism

An isomorphism from a graph G to a graph H (both on n vertices) is a bijection between their
vertices that “preserves” the edges. More precisely, π is an isomorphism from G to H if for all pairs
of vertices, (u, v) is an edge in G when and only when (π(u), π(v)) is an edge in H. If this is the
case we write π(G) = H. For example the two graphs in Figure 1 are isomorphic.

1
2

3
4

5

1
2

3
4

5

Figure 1: Two isomorphic graphs. One isomorphism is π(1) = 1, π(2) = 3, π(3) = 5, π(4) = 2, π(5) = 4.

In this example it was easy to see that the two graphs are isomorphic, but it is less clear what
happens when the graphs are large (see Figure 2).

Suppose Alice knows an isomorphism π from G0 to G1 and wants to convince Bob that the two are
isomorphic. One thing she can certainly do is send Bob π (namely, the list of values π(1), . . . , π(n)
where n is the number of vertices). Bob can then verify that π(G0) = G1: He goes over all pairs
of vertices (u, v) and checks that (π(u), π(v)) is an edge in H precisely in those cases when (u, v)
is an edge in G0. If G0 and G1 happened not to be isomorphic, no “proof” of Bob would pass.

1



Figure 2: Two graphs that may or may not be isomorphic.

Now consider an “identification scheme” in which π is Alice’s secret key and (G0, G1) is her public
key. The challenge is for her to prove that G and H are isomorphic. Alice can certainly do this by
furnishing π to Bob, but then Bob can impersonate her at will. Can she convince Bob that G and
H are isomorphic without leaking any information about π?

Graph Isomorphism Protocol: Prover’s input is G0, G1 and π. Verifier’s input is G0, G1.

1. Prover chooses a random permutation ρ of {1, . . . , n} and sends the permuted graph ρ(G0).

2. Upon receiving the graph G, Verifier sends a random bit b.

3. Prover sends ρ if b = 0 and ρ ◦ π (the permutation (ρ ◦ π)(u) = ρ(π(u)) if b = 1.

4. Upon receiving φ, Verifier accepts if φ(Gb) = G.

If G0 and G1 are isomorphic and both parties follow the protocol then Verifier will accept because
G0 and G1 are both isomorphic to G and Prover supplies the correct isomorphism under both
challenges b = 0 and b = 1.

If, on the other hand, G0 and G1 are not isomorphic then no matter which graph G Prover supplies
it cannot be isomorphic to both G0 and G1. With probability half, Verifier’s challenge b will identify
the graph Gb that is not isomorphic to G, in which case no matter which “isomorphism” π Prover
submits she won’t pass validation.

This is an example of an interactive proof: After the interaction Verifier is convinced with some
degree of certainty that G and H are isomorphic. If he wants more certainty he can ask Prover to
run the protocol multiple times.

After running the protocol Verifier finds out that his inputs G0, G1 are isomorphic. What else
does he learn? His view consists of a randomly permuted copy G of G0 or G1, the bit b, and an
isomorphism φ from Gb to G. He can simulate his view by first picking b and φ then setting G to
φ−1(Gb). So Prover has learned nothing beyond the fact that G0 and G1 are isomorphic.

By this point you must have realized that the protocol we described is quite similar to Schnorr’s
identification scheme. Both are examples of zero-knowledge proofs. There is one subtle difference
regarding the objectives. Graph isomorphism is a proof of fact: Alice convinces Bob that G0 and
G1 are isomorphic, namely that there exists an isomorphism from G0 to G1. In contrast, security
of Schnorr’s identification required a proof of knowledge: Alice had to convince Bob that she knows
SK such that gSK = PK, not just that such an SK exists. While we will eventually want to talk
about proofs of knowledge, proofs of fact are simpler to define. Let’s do that first.

2



2 Zero-knowledge proofs

A proof relation R is a relation over pairs (x, π) called the statement and the proof. The statement
“(x, π) satisfies R” means that π is a valid proof of x. A statement x is a fact if there exists a proof
π such that (x, π) satisfies R. In the graph isomorphism example, x is the pair of graphs (G0, G1),
π is the isomorphism, and ((G0, G1), π) satisfies R if and only if π(G0) = G1.

Definition 1. A proof system for R is a protocol between Prover P and Verifier V in which Verifier
gets input x and Prover gets inputs x and π with the following two properties:

1. Completeness: If (x, π) ∈ R then upon interacting with P (x, π), V (x) always accepts.

2. Soundness: If (x, π) 6∈ R for every π then upon interacting with any P ∗ (that does not
necessarily follow the protocol), V (x) accepts with probability at most 1/2.

The protocol for Graph Isomorphism has both properties: The honest prover passes verification,
but no cheating prover can do so.

The security requirement is that Verifier should not learn anything except that x is a fact. Since
the honest prover is only defined for inputs that satisfy the proof relation, security only needs to
hold for such inputs.

Definition 2. The proof system (P, V ) is (s, ε)-honest-verifier zero-knowledge if there is a simulator
Sim such that for all (x, π) ∈ R, the verifier’s view on input x is (s, ε)-indistinguishable from the
random variable Sim(x).

The graph isomorphism proof system is (∞, 0)-honest-verifier zero-knowledge because the output
of the simulator is identically distributed to the view of the verifier.

What about cheating verifiers that might not follow instructions? In the graph isomorphism proto-
col, Verifier has one opportunity to cheat by not choosing his challenge b at random. He can even
make it depend on Prover’s message G.

This is much like the analysis of Schnorr’s protocol against impersonators. The same type of
simulator works here. The simulator begins by making a random guess b for the cheating verifier’s
challenge b∗. It then samples the view expected by the verifier assuming the challenge is b, namely
the pair (ρ(Gb), ρ) for a random ρ. It then runs the cheating verifier on first message ρ(Gb). Since
ρ(G0) and ρ(G1) are identically distributed, the verifier’s response b∗ is independent of b, so the
two are equal with probability half. Conditioned on this happening, (ρ(Gb), ρ) together with the
verifier’s randomness is identical to the verifier’s view, so the simulator can output this view. If
not, the simulator tries again.

In this instructive example the simulator runs the cheating verifier, so its size will depend on the
size of the cheating verifier. It is sensible to specify the simulator size as a function of the cheating
verifier size. We call this function the simulation overhead.

Definition 3. The proof system (P, V ) is (s, ε)-zero-knowledge with simulation overhead oh if for
every verifier V ∗ of size t and every (x, π) ∈ R there exists a simulator Sim of size oh(t) for which
the view of V ∗(x) when interacting with P (x, π) is (s, ε)-indistinguishable from Sim(x).

The graph isomorphism simulator has overhead oh(t) = t+O(n log n) for simulation error ε = 1/2.
The O(n log n) term accounts for the complexity of sampling ρ and the verification. For lower error
the simulator can be run multiple times, so for any k the protocol is (∞, 2−k)-zero-knowledge with
overhead k(t+O(n log n)).

3



The intended use of zero-knowledge in the context of two-party computation is for the parties to
prove to one another that they are following the rules of the protocol. These are statements like
h = gSK that have nothing to do with graph isomorphisms. To handle them we will make use of a
more general type of zero-knowledge protocol that can be used to prove any fact. For that we need
one more ingredient.

3 Commitments

Let’s go back to the oblivious transfer protocol from last lecture for a moment. To securely compute
OT (x0x1, b), Alice and Bob run AND protocols on inputs (x0, b) and (x1, b). If Bob wants to
convince Alice that he is playing by the rules, he has to prove to her that the inputs he uses in
both runs refer to the same b (without revealing it). A cryptographic protocol for this is called a
commitment scheme.

A commitment scheme consists of two phases. In the commitment phase, Sender sends a comm-
mitment of her message M to Receiver. The commitment should bind Sender to M , but hide M
from Receiver. In the revelation phase, Sender sends M together with a certificate to Receiver who
is convinced that M is the value that Sender committed to. Let’s describe a protocol first and give
the definitions later.

DDH commitments:

Commitment: Sender sends (h, h′, h′′) = (gX , gY , gXY ·M) for random X,Y ∼ Zq.

Revelation: Sender reveals M and X,Y . Receiver verifies h = gX , h′ = gY , and h′′ = gXY ·M .

By the DDH assumption commitments to any two messages look alike to Receiver, so the commit-
ment hide Sender’s message. On the other hand, Sender cannot decommit to any message other
than M because h and h′ uniquely determine X and Y , and h′′, X, Y uniquely determine M .

A commitment scheme is a two-phase protocol between Sender and Receiver so that (when both
are honest) Receiver’s output equals Sender’s input with probability one. There are two security
requirements:

• Binding: The probability that a (malicious) sender S∗ of size at most s can make Receiver
validate two different messages on the same commitment is at most ε.

• Hiding: The view of any (malicious) R∗ in the commitment phase is (s, ε)-simulatable.

The above reasoning gives the following security guarantees.

Theorem 4. Under the (s, ε)-DDH assumption, DDH commitments are (∞, 0)-binding and (s, ε)-
hiding (with a simulator that samples 3 random elements of G).

It is in fact possible to construct a commitment scheme from any pseudorandom generator. You
will do this in Homework 3.

4 Zero-knowledge proofs for all facts

A 3-coloring of a graph G is an assignment of one of three colors (red, green, or blue) to its vertices
so that there are no conflicting edges. A conflicting edge is one whose endpoints have the same

4



color. Figure 3 shows examples of valid and invalid 3-colorings. A coloring can be represented as
a string in {R, G, B}n with each symbol representing the color of the corresponding vertex.

1
2

3
4

5

1
2

3
4

5

1
2

3
4

5

RGRGB RGRGR BGRGR

valid invalid invalid

Figure 3: Valid and invalid 3-colorings. The second graph has a valid 3-coloring but not the third one.

The proof relation 3COL consists graphs and their valid 3-colorings:

(G, π) ∈ 3COL iff π is a valid 3-coloring of G.

What makes 3COL special in contrast to graph isomorphism is that 3COL is a complete proof
relation: Any fact can be converted into a graph so that (valid) proofs map to (valid) colorings.
For example, if Alice wants to convince Bob that there exists (X,Y ) such that his input (h, h′, h′′)
is of the form (gX , gY , gXY ), they can canonically convert (h, h′, h′′) into a graph G and (X,Y )
into a coloring π so that

• If h = gX and h′ = gY and h′′ = gXY then π is a valid 3-coloring of G, and

• If (h, h′, h′′) is not a DDH triple then G is not 3-colorable.

All that remains to do is to describe a zero-knowledge proof system for 3COL.

Goldreich-Micali-Wigderson (GMW) proof system: Prover’s input is a graph G with n
vertices and m edges and a valid 3-coloring π. Verifier’s input is G.

1. Prover randomly permutes the three colors in π (e.g. he replaces R with G, G with R and leaves
B intact) and sends commitments (Com(π1), . . . , Com(πn)) for the color of every vertex.

2. Upon receiving the commitments Verifier chooses a random edge (v, w) and sends it to Prover.

3. Prover reveals the colors πv and πw and the corresponding certificates to Verifier.

4. Verifier accepts if the certificates are correct and if πv 6= πw.

If π is a valid 3-coloring then πv 6= πw are different for every edge (v, w), so the proof system is
complete.

Claim 5. If the commitments are perfectly binding1 then for every G that is not 3-colorable and
for every P ∗, the probability that Verifier accepts G upon interacting with P ∗ is at most 1− 1/m.

Proof. If G is not 3-colorable then for every first message (C∗1 , . . . , C
∗
n) there must exist an edge

(v, w) for which Prover cannot decommit C∗v and C∗w to different colors. Otherwise, the decom-
mitments would constitute a valid 3-coloring of G which does not exist. With probability at least
1/m, Verifier challenges Prover on this exact edge, Prover is unable to provide certificates and
verification fails.

1It is enough to assume that they are (s, ε)-binding, but we have perfect binding so we might as well use it.

5



When the GMW proof system is applied, the number m of edges grows with the size of the fact
being proved, so a cheating prover appears to have a solid chance of making Verifier accept a false
proof. There are more robust ways to convert proofs of facts into 3-colorings of graphs so that if
the fact is false, any 3-coloring of the graph violates some constant fraction of the edges like 10%.
A cheating prover still has 90% chance of passing verification.

This soundness error can be lowered by repeating the protocol several times. After r independent
repetitions the soundness error drops exponentially in r, so even if the original error is as large as
1− 1/m after mk repetititons it becomes as small as (1− 1/m)mk ≤ e−k.

It remains to prove that the protocol is zero-knowledge. We consider cheating verifiers right away.

Theorem 6. If the commitments are (s, ε)-hiding with simulation overhead oh(t) and computable
in size tCom then the GMW proof system is (s− ntCom, (1− 1/m+ 2ε)r + nε)-zero-knowledge with
simulation overhead r(n · oh(t) + t+ 2tCom +O(log n)) for every r.

Proof Sketch. The simulator for a cheating verifier V ∗ guesses the edge (v, w) at random. It gen-
erates commitments to two distinct random colors, e.g. Com(R) and Com(B) for vertices v and
w and runs the commitment simulator to get “commitments” for all the other vertices. It sends
these as a first message to V ∗ and receives a response (v∗, w∗). If v = v∗ and w = w∗ it reveals the
commitments and certificates. Otherwise it tries again for up to r times.

By the hiding property, the first message generated by the simulator is (s, 2ε)-indistinguishable
from n simulated commitments. On the other hand, n simulated commitments are independent
of the choice of v and w so the probability that (v, w) equals V ∗’s response (v∗, w∗) is 1/m. The
probability that this event will fail to happen in all r repetitions is therefore at most (1−1/m+2ε)r.

Conditioned on (v, w) = (v∗, w∗), the simulator’s output is (s−(n−2)tCom, (n−2)ε)-indistinguishable
from V ∗’s actual view. In both views, the commitments that are revealed to V ∗ are two independent
random colors and all the others are independent.

It turns out that the manner in which the proof system repetition is performed (in order to reduce
the soundness error) affects zero-knowledge. The GMW proof system remains zero-knowledge if
it is repeated sequentially, but it is not known if zero-knowledge is preserved if the repetition
is performed in parallel. One drawback of sequential repetition is that it increases the round
complexity of the protocol.2

2There is a different type of “repetition” that preserves zero-knowledge and adds only three messages regardless
of the desired soundness error, assuming the cheating prover is computationally bounded.

6


	Graph isomorphism
	Zero-knowledge proofs
	Commitments
	Zero-knowledge proofs for all facts

