Question 1

In this question you will show that the database reconstruction algorithm from Lecture 6 can be made efficient.

We will say that a vector $y \in [-2, 2]^m$ is β -heavy if at least m/10 of its coordinates have absolute value at least β . Let

$$q'_S(y) = \sum_{i \in S} y_i - \sum_{i \notin S} y_i$$

where S is a subset of [m] and y is a vector in \mathbb{R}^m .

(a) Show that if $y \in [-2, 2]^m$ is 1/4-heavy and S is a random subset of [m], then there exists a sufficiently small constant γ (independent of m) such that

$$\Pr[q_S'(y) \ge \gamma \sqrt{m}] \ge \gamma$$

Solution: We can write $q'_S(y) = X = \sum_{i=1}^m X_i y_i$ where X_1, \ldots, X_m are i.i.d. $\{-1, 1\}$ random variables. Then E[X] = 0, $E[X^2] = \sum_{i=1}^m y_i^2 \ge (m/10)(1/16) \ge m/160$, and $E[X^4] = \sum_{i=1}^m y_i^4 + \sum_{i \ne j} 3y_i^2 y_j^2 \le 16m + 48m(m-1) \le 48m^2$. By the Paley-Zygmund inequality,

$$\Pr[X \ge \sqrt{m}/60] \ge \Pr[X^2 \ge \frac{1}{4} \operatorname{E}[X^2]] \ge \frac{9}{16} \cdot \frac{(m/160)^2}{(48m^2)^2} \ge 10^{-9}.$$

(b) Let G be a finite subset of $[-1, 1]^m$ and \mathcal{S} be a collection of s random independent subsets of [m]. Show that the probability there exist $x \in \{-1, 0, 1\}^m$ and $x' \in G$ such x - x' is 1/4-heavy but $q'_S(x - x') < \gamma \sqrt{m}$ for all $S \in \mathcal{S}$ is at most $3^m |G|(1 - \gamma)^s$.

Solution: For fixed x, x' such that x - x' is 1/4 heavy and a single random subset S, by part (a) the probability that $q'_S(x - x') < \gamma \sqrt{m}$ is at most $1 - \gamma$. By independence, the probability that there exists such an S in S is at most $(1 - \gamma)^s$. Taking a union bound over at most 3^m choices of x and at most |G| choices for x' gives the desired conclusion.

(c) Show that if $s \ge Km \log m$ for a sufficiently large constant K, then with probability at least 1/2 over the choice of \mathcal{S} , for every $x \in \{-1, 0, 1\}^m$ and every $x' \in [-1, 1]^m$ such that x - x' is 1/3-heavy, there exists a set $S \in \mathcal{S}$ such that $q'_S(x - x') \ge \gamma \sqrt{m}/2$. (Hint: Take G to be a sufficiently dense grid in $[-2, 2]^m$.)

Solution: Let $D = \lceil \sqrt{m}/\gamma \rceil$ and let G be the set of all points of the form $(d_1/D, \ldots, d_m/D)$ where d_1, \ldots, d_m are integers ranging from -2D to 2D. Then $|G| = (4D)^m = 2^{O(m \log m)}$. By part (b), for K sufficiently large, with probability at least 1/2 for every pair $x \in \{-1, 0, 1\}^m$ and $x^* \in G$ there exists a set $S \in S$ such that $q'_S(x - x^*) \ge \gamma \sqrt{m}$. Assume this is the case and let $x, x' \in [-1, 1]^m$ be

any pair of points such that x - x' is 1/3-heavy. If x^* is the closest point to x' in G (in ℓ_{∞} distance) then $x - x^*$ must be 1/4 heavy because for any coordinate i,

$$|x_i - x_i^*| \ge |x_i - x_i'| - |x_i' - x_i^*| \ge |x_i - x_i'| - \frac{1}{12m}$$

so if $x_i - x'_i \ge 1/3$, $x_i - x^*_i$ must be at least 1/4. Then there exists a set S such that $q'_S(x - x^*) \ge \gamma \sqrt{m}$. For this set S,

$$q'_{S}(x-x') = q'_{S}(x-x^{*}) - q'_{S}(x^{*}-x') \ge \gamma \sqrt{m} - |q'_{S}(x^{*}-x')|.$$

The entries of $x^* - x'$ have value between -1/2D and 1/2D, so $|q'_S(x^* - x')| \le m/2D \le \gamma \sqrt{m}/2$, so $q'_S(x - x^*) \ge \gamma \sqrt{m}/2$ as desired.

- (d) Suppose that M is a mechanism that on input¹ $x \in \{-1, 0, 1\}^m$ and query q'_S outputs an approximation to $q'_S(x)$ with additive error $\gamma \sqrt{m}/6$. Show that with constant probability, the following algorithm outputs a vector \hat{x} that agrees with x on 9m/10 of its coordinates:
 - (i) Choose a collection \mathcal{S} of s independent uniform random subsets of [m].
 - (ii) Query M to obtain approximations a_S to $q'_S(x)$ for all $S \in \mathcal{S}$.
 - (iii) Find $x' \in [-1, 1]^m$ such that $|q'_S(x') a_S| \le \gamma \sqrt{m}/6$, if it exists. (This is a linear program; it can be solved efficiently.)
 - (iv) For every coordinate i, set

$$\hat{x}_{i} = \begin{cases} 1, & \text{if } x'_{i} \ge 1/2, \\ -1, & \text{if } x'_{i} \le 1/2, \\ 0, & \text{otherwise} \end{cases}$$

and output \hat{x} .

Solution: By assumption, x' = x is always a feasible solution in step (iii), so the algorithm always finds some x'. On the other hand, any x' that the algorithm outputs must satisfy

$$|q'_S(x'-x)| \le |q'_S(x') - a_S| + |a_S - q'_S(x)| \le \frac{\gamma\sqrt{m}}{6} + \frac{\gamma\sqrt{m}}{6} = \frac{\gamma\sqrt{m}}{3}$$

for all $S \in S$. By part (c), x - x' cannot be 1/3-heavy, so at least 9m/10 coordinates of x - x' have absolute value less than 1/3. On each of these coordinates, \hat{x}_i must equal x, so \hat{x} and x match on 9m/10 of their coordinates.

Question 2

In this question you will that if a synthetic database mechanism is differentially private then its output is unlikely to contain rows from the original database. Let $M: D^n \to D^d$ be a synthetic database mechanism.

¹In the actual database, we include the row (i, 1) if $x_i = 1$, (i, -1) if $x_i = -1$, and do not include a row that starts with *i* otherwise.

(a) Let $x \in D^n$ be a database whose rows are independent uniform samples from D and x' be a database obtained by resampling the *i*th row of x uniformly from D and independently of the other rows. Show that

 $\Pr_{M,x,x'}[M(x') \text{ contains the } i\text{-th row of } x] \leq d/|D|.$

Solution: Conditioned on M(x') the *i*-th row of x, which we call x_i , is a uniform random row in D. For every j, the probability that x_i equals the j-th row of M(x') is 1/|D|. By a union bound over all rows of M(x') we obtain the bound of d/|D|.

(b) Use part (a) to show that if M is (ε, δ) -differentially private, then

 $\Pr_{M,x,x'}[M(x) \text{ contains at least one row of } x] \leq e^{\varepsilon} dn/|D| + \delta n.$

Solution: By differential privacy, for every i,

 $\Pr[M(x) \text{ contains } x_i] \le e^{\varepsilon} \Pr[M(x') \text{ contains } x_i] + \delta \le e^{\varepsilon} d/|D| + \delta.$

Taking a union bound over all i proves the claim.

(c) Now let \mathcal{D} be an arbitrary distribution over D and assume the rows of x and x' are sampled as in part (a), but from \mathcal{D} instead of the uniform distribution over D. Show that

 $\Pr_{M,x,x'}[M(x) \text{ contains at least one row of } x] \leq e^{\varepsilon} p dn + \delta n.$

where $p = \max_{r} \{ \Pr_{R \sim D}[R = r] \}$. (You do not need to redo the proofs from parts (a) and (b), just explain the differences.)

Solution: In part (a), the probability that x_i equals the *j*-th row of x' is no longer 1/|D|, but it is at most p. The rest of the proof is exactly the same with all instances of 1/|D| replaced by p.

(d) (Extra credit) Now suppose x is chosen from the following distribution: The *i*-th row of x equals (i, 0) with probability 1/2 and (i, 1) with probability 1/2, independently from the other rows. If the output of M(x) contains 99% of the rows of x with probability at least 99%, can M be $(0.1, n^{-100})$ -differentially private for sufficiently large n?

Question 3

Let P be a subset of $\{0,1\}^n$. A *testing algorithm* for property P is a randomized algorithm M such that $\Pr[M(x) \text{ accepts}] \ge 2/3$ for every $x \in P$ and $\Pr[M(x') \text{ accepts}] \le 1/3$ for every $x' \in \{0,1\}^n$ that differs from all $x \in P$ in at least εn coordinates.

(a) Show that every P has a $O(1/\varepsilon n)$ -differentially private testing algorithm.

Solution: Let M be the exponential mechanism with outcomes accept and reject and utilities

$$u(x, \operatorname{accept}) = -\min_{x' \in P} |x - x'|$$
 and $u(x, \operatorname{reject}) = -\min_{x' \notin P} |x - x'|$.

Then u is 1-sensitive, so the exponential mechanism with parameter $1/\varepsilon n$ is $1/\varepsilon n$ -differentially private.

If $x \in P$, then u(x, accept) > u(x, reject) so M(x) accepts with probability at least 1/2. If x differs from all $x' \in P$ in at least εn coordinates, then $u(x, \text{accept}) < -\varepsilon n$ and u(x, (reject)) = 0, so

$$\Pr[M(x) \text{ accepts}] < \frac{e^{-1}}{e^{-1} + e^0} < 0.269.$$

This does not quite meet the requirements, where the probabilities should be 1/3 and 2/3. One way to achieve this is to change the utilities to, say,

$$u(x, \text{accept}) = \varepsilon n/2 - \min_{x' \in P} |x - x'| \quad \text{and} \quad u(x, \text{reject}) = \varepsilon n/2 - \min_{x' \notin P} |x - x'|$$

and use a slightly larger privacy parameter, say $3/\varepsilon n$, and repeat the same analysis.

(b) A testing algorithm is one-sided if Pr[M(x) accepts] = 1 for every $x \in P$. Which P have a (100, 0.1)-differentially private one-sided testing algorithm?

Solution: If you set $\Pr[M(x) \text{ accepts}]$ to equal one for $x \in P$, 0.9 for x that differ from some $x' \in P$ in one coordinate, 0.8 for x that differ from some x' in P in two coordinates, and so on, and 0 for the remaining x, the resulting algorithm is one-sided and differentially private. This is not what I meant to ask.

What I had meant to ask is which P have a 100-differentially private algorithm. Then if M(x) rejects with probability 0 for any x, it is forced to reject with probability 0 for all x, so M(x) accepts all inputs. It follows that every string in $\{0,1\}^n$ must be within distance εn of some string in P. In coding theory terminology, P is then a covering code of radius εn .