Question 1

In this question you will show that the database reconstruction algorithm from Lecture 6 can be made efficient.
We will say that a vector $y \in[-2,2]^{m}$ is β-heavy if at least $m / 10$ of its coordinates have absolute value at least β. Let

$$
q_{S}^{\prime}(y)=\sum_{i \in S} y_{i}-\sum_{i \notin S} y_{i}
$$

where S is a subset of $[m]$ and y is a vector in \mathbb{R}^{m}.
(a) Show that if $y \in[-2,2]^{m}$ is $1 / 4$-heavy and S is a random subset of $[m]$, then there exists a sufficiently small constant γ (independent of m) such that

$$
\operatorname{Pr}\left[q_{S}^{\prime}(y) \geq \gamma \sqrt{m}\right] \geq \gamma
$$

Solution: We can write $q_{S}^{\prime}(y)=X=\sum_{i=1}^{m} X_{i} y_{i}$ where X_{1}, \ldots, X_{m} are i.i.d. $\{-1,1\}$ random variables. Then $\mathrm{E}[X]=0, \mathrm{E}\left[X^{2}\right]=\sum_{i=1}^{m} y_{i}^{2} \geq(m / 10)(1 / 16) \geq m / 160$, and $\mathrm{E}\left[X^{4}\right]=\sum_{i=1}^{m} y_{i}^{4}+$ $\sum_{i \neq j} 3 y_{i}^{2} y_{j}^{2} \leq 16 m+48 m(m-1) \leq 48 m^{2}$. By the Paley-Zygmund inequality,

$$
\operatorname{Pr}[X \geq \sqrt{m} / 60] \geq \operatorname{Pr}\left[X^{2} \geq \frac{1}{4} \mathrm{E}\left[X^{2}\right]\right] \geq \frac{9}{16} \cdot \frac{(m / 160)^{2}}{\left(48 m^{2}\right)^{2}} \geq 10^{-9}
$$

(b) Let G be a finite subset of $[-1,1]^{m}$ and \mathcal{S} be a collection of s random independent subsets of $[m]$. Show that the probability there exist $x \in\{-1,0,1\}^{m}$ and $x^{\prime} \in G$ such $x-x^{\prime}$ is $1 / 4$-heavy but $q_{S}^{\prime}\left(x-x^{\prime}\right)<\gamma \sqrt{m}$ for all $S \in \mathcal{S}$ is at most $3^{m}|G|(1-\gamma)^{s}$.

Solution: For fixed x, x^{\prime} such that $x-x^{\prime}$ is $1 / 4$ heavy and a single random subset S, by part (a) the probability that $q_{S}^{\prime}\left(x-x^{\prime}\right)<\gamma \sqrt{m}$ is at most $1-\gamma$. By independence, the probability that there exists such an S in \mathcal{S} is at most $(1-\gamma)^{s}$. Taking a union bound over at most 3^{m} choices of x and at most $|G|$ choices for x^{\prime} gives the desired conclusion.
(c) Show that if $s \geq K m \log m$ for a sufficiently large constant K, then with probability at least $1 / 2$ over the choice of \mathcal{S}, for every $x \in\{-1,0,1\}^{m}$ and every $x^{\prime} \in[-1,1]^{m}$ such that $x-x^{\prime}$ is $1 / 3$-heavy, there exists a set $S \in \mathcal{S}$ such that $q_{S}^{\prime}\left(x-x^{\prime}\right) \geq \gamma \sqrt{m} / 2$. (Hint: Take G to be a sufficiently dense grid in $[-2,2]^{m}$.)

Solution: Let $D=\lceil\sqrt{m} / \gamma\rceil$ and let G be the set of all points of the form $\left(d_{1} / D, \ldots, d_{m} / D\right)$ where d_{1}, \ldots, d_{m} are integers ranging from $-2 D$ to $2 D$. Then $|G|=(4 D)^{m}=2^{O(m \log m)}$. By part (b), for K sufficiently large, with probability at least $1 / 2$ for every pair $x \in\{-1,0,1\}^{m}$ and $x^{*} \in G$ there exists a set $S \in \mathcal{S}$ such that $q_{S}^{\prime}\left(x-x^{*}\right) \geq \gamma \sqrt{m}$. Assume this is the case and let $x, x^{\prime} \in[-1,1]^{m}$ be
any pair of points such that $x-x^{\prime}$ is $1 / 3$-heavy. If x^{*} is the closest point to x^{\prime} in G (in ℓ_{∞} distance) then $x-x^{*}$ must be $1 / 4$ heavy because for any coordinate i,

$$
\left|x_{i}-x_{i}^{*}\right| \geq\left|x_{i}-x_{i}^{\prime}\right|-\left|x_{i}^{\prime}-x_{i}^{*}\right| \geq\left|x_{i}-x_{i}^{\prime}\right|-\frac{1}{12 m}
$$

so if $x_{i}-x_{i}^{\prime} \geq 1 / 3, x_{i}-x_{i}^{*}$ must be at least $1 / 4$. Then there exists a set S such that $q_{S}^{\prime}\left(x-x^{*}\right) \geq \gamma \sqrt{m}$. For this set S,

$$
q_{S}^{\prime}\left(x-x^{\prime}\right)=q_{S}^{\prime}\left(x-x^{*}\right)-q_{S}^{\prime}\left(x^{*}-x^{\prime}\right) \geq \gamma \sqrt{m}-\left|q_{S}^{\prime}\left(x^{*}-x^{\prime}\right)\right| .
$$

The entries of $x^{*}-x^{\prime}$ have value between $-1 / 2 D$ and $1 / 2 D$, so $\left|q_{S}^{\prime}\left(x^{*}-x^{\prime}\right)\right| \leq m / 2 D \leq \gamma \sqrt{m} / 2$, so $q_{S}^{\prime}\left(x-x^{*}\right) \geq \gamma \sqrt{m} / 2$ as desired.
(d) Suppose that M is a mechanism that on input ${ }^{1} x \in\{-1,0,1\}^{m}$ and query q_{S}^{\prime} outputs an approximation to $q_{S}^{\prime}(x)$ with additive error $\gamma \sqrt{m} / 6$. Show that with constant probability, the following algorithm outputs a vector \hat{x} that agrees with x on $9 m / 10$ of its coordinates:
(i) Choose a collection \mathcal{S} of s independent uniform random subsets of $[m]$.
(ii) Query M to obtain approximations a_{S} to $q_{S}^{\prime}(x)$ for all $S \in \mathcal{S}$.
(iii) Find $x^{\prime} \in[-1,1]^{m}$ such that $\left|q_{S}^{\prime}\left(x^{\prime}\right)-a_{S}\right| \leq \gamma \sqrt{m} / 6$, if it exists. (This is a linear program; it can be solved efficiently.)
(iv) For every coordinate i, set

$$
\hat{x}_{i}= \begin{cases}1, & \text { if } x_{i}^{\prime} \geq 1 / 2 \\ -1, & \text { if } x_{i}^{\prime} \leq 1 / 2 \\ 0, & \text { otherwise }\end{cases}
$$

and output \hat{x}.

Solution: By assumption, $x^{\prime}=x$ is always a feasible solution in step (iii), so the algorithm always finds some x^{\prime}. On the other hand, any x^{\prime} that the algorithm outputs must satisfy

$$
\left|q_{S}^{\prime}\left(x^{\prime}-x\right)\right| \leq\left|q_{S}^{\prime}\left(x^{\prime}\right)-a_{S}\right|+\left|a_{S}-q_{S}^{\prime}(x)\right| \leq \frac{\gamma \sqrt{m}}{6}+\frac{\gamma \sqrt{m}}{6}=\frac{\gamma \sqrt{m}}{3}
$$

for all $S \in \mathcal{S}$. By part (c), $x-x^{\prime}$ cannot be $1 / 3$-heavy, so at least $9 m / 10$ coordinates of $x-x^{\prime}$ have absolute value less than $1 / 3$. On each of these coordinates, \hat{x}_{i} must equal x, so \hat{x} and x match on $9 \mathrm{~m} / 10$ of their coordinates.

Question 2

In this question you will that if a synthetic database mechanism is differentially private then its output is unlikely to contain rows from the original database. Let $M: D^{n} \rightarrow D^{d}$ be a synthetic database mechanism.

[^0](a) Let $x \in D^{n}$ be a database whose rows are independent uniform samples from D and x^{\prime} be a database obtained by resampling the i th row of x uniformly from D and independently of the other rows. Show that
$$
\operatorname{Pr}_{M, x, x^{\prime}}\left[M\left(x^{\prime}\right) \text { contains the } i \text {-th row of } x\right] \leq d /|D|
$$

Solution: Conditioned on $M\left(x^{\prime}\right)$ the i-th row of x, which we call x_{i}, is a uniform random row in D. For every j, the probability that x_{i} equals the j-th row of $M\left(x^{\prime}\right)$ is $1 /|D|$. By a union bound over all rows of $M\left(x^{\prime}\right)$ we obtain the bound of $d /|D|$.
(b) Use part (a) to show that if M is (ε, δ)-differentially private, then

$$
\operatorname{Pr}_{M, x, x^{\prime}}[M(x) \text { contains at least one row of } x] \leq e^{\varepsilon} d n /|D|+\delta n
$$

Solution: By differential privacy, for every i,

$$
\operatorname{Pr}\left[M(x) \text { contains } x_{i}\right] \leq e^{\varepsilon} \operatorname{Pr}\left[M\left(x^{\prime}\right) \text { contains } x_{i}\right]+\delta \leq e^{\varepsilon} d /|D|+\delta
$$

Taking a union bound over all i proves the claim.
(c) Now let \mathcal{D} be an arbitrary distribution over D and assume the rows of x and x^{\prime} are sampled as in part (a), but from \mathcal{D} instead of the uniform distribution over D. Show that

$$
\operatorname{Pr}_{M, x, x^{\prime}}[M(x) \text { contains at least one row of } x] \leq e^{\varepsilon} p d n+\delta n
$$

where $p=\max _{r}\left\{\operatorname{Pr}_{R \sim \mathcal{D}}[R=r]\right\}$. (You do not need to redo the proofs from parts (a) and (b), just explain the differences.)

Solution: In part (a), the probability that x_{i} equals the j-th row of x^{\prime} is no longer $1 /|D|$, but it is at most p. The rest of the proof is exactly the same with all instances of $1 /|D|$ replaced by p.
(d) (Extra credit) Now suppose x is chosen from the following distribution: The i-th row of x equals $(i, 0)$ with probability $1 / 2$ and $(i, 1)$ with probability $1 / 2$, independently from the other rows. If the output of $M(x)$ contains 99% of the rows of x with probability at least 99%, can M be ($0.1, n^{-100}$)differentially private for sufficiently large n ?

Question 3

Let P be a subset of $\{0,1\}^{n}$. A testing algorithm for property P is a randomized algorithm M such that $\operatorname{Pr}[M(x)$ accepts $] \geq 2 / 3$ for every $x \in P$ and $\operatorname{Pr}\left[M\left(x^{\prime}\right)\right.$ accepts $] \leq 1 / 3$ for every $x^{\prime} \in\{0,1\}^{n}$ that differs from all $x \in P$ in at least εn coordinates.
(a) Show that every P has a $O(1 / \varepsilon n)$-differentially private testing algorithm.

Solution: Let M be the exponential mechanism with outcomes accept and reject and utilities

$$
u(x, \text { accept })=-\min _{x^{\prime} \in P}\left|x-x^{\prime}\right| \quad \text { and } \quad u(x, \text { reject })=-\min _{x^{\prime} \notin P}\left|x-x^{\prime}\right| .
$$

Then u is 1 -sensitive, so the exponential mechanism with parameter $1 / \varepsilon n$ is $1 / \varepsilon n$-differentially private.
If $x \in P$, then $u(x$, accept $)>u(x$, reject $)$ so $M(x)$ accepts with probability at least $1 / 2$. If x differs from all $x^{\prime} \in P$ in at least εn coordinates, then $u(x$, accept $)<-\varepsilon n$ and $u(x,($ reject $))=0$, so

$$
\operatorname{Pr}[M(x) \text { accepts }]<\frac{e^{-1}}{e^{-1}+e^{0}}<0.269
$$

This does not quite meet the requirements, where the probabilities should be $1 / 3$ and $2 / 3$. One way to achieve this is to change the utilities to, say,

$$
u(x, \text { accept })=\varepsilon n / 2-\min _{x^{\prime} \in P}\left|x-x^{\prime}\right| \quad \text { and } \quad u(x, \text { reject })=\varepsilon n / 2-\min _{x^{\prime} \notin P}\left|x-x^{\prime}\right| .
$$

and use a slightly larger privacy parameter, say $3 / \varepsilon n$, and repeat the same analysis.
(b) A testing algorithm is one-sided if $\operatorname{Pr}[M(x)$ accepts $]=1$ for every $x \in P$. Which P have a $(100,0.1)$ differentially private one-sided testing algorithm?

Solution: If you set $\operatorname{Pr}[M(x)$ accepts $]$ to equal one for $x \in P, 0.9$ for x that differ from some $x^{\prime} \in P$ in one coordinate, 0.8 for x that differ from some x^{\prime} in P in two coordinates, and so on, and 0 for the remaining x, the resulting algorithm is one-sided and differentially private. This is not what I meant to ask.

What I had meant to ask is which P have a 100-differentially private algorithm. Then if $M(x)$ rejects with probability 0 for any x, it is forced to reject with probability 0 for all x, so $M(x)$ accepts all inputs. It follows that every string in $\{0,1\}^{n}$ must be within distance εn of some string in P. In coding theory terminology, P is then a covering code of radius εn.

[^0]: ${ }^{1}$ In the actual database, we include the row $(i, 1)$ if $x_{i}=1,(i,-1)$ if $x_{i}=-1$, and do not include a row that starts with i otherwise.

