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In the last lecture we saw the Laplace mechanism for privately answering counting queries. We also
showed that multiple queries can be answered privately using a product mechanism. However, the
privacy parameter deteriorates linearly with the number of queries.

We will now consider some additional types of queries that can be handled using variants of the
Laplace mechanism.

We will then show a different mechanism that, for certain settings of parameters, can handle
an arbitrarily large number of counting queries without suffering the privacy deterioration of the
product mechanism.

1 Beyond counting queries

Histograms

Suppose that we have a database containing CSCI 5520 students’ names, some additional informa-
tion, and their grades. We want to know how many students got an A, how many got a B, and
so on. This is an example of a histogram query: Its answer consists of a vector of five numbers
(nA, nB, nC , nD, nF ) giving the number of students with each grade.

In general, given a function h from the domain D to a finite set of buckets B, the answer to the
histogram query qh(x) consists of the sequence of numbers (nb)b∈B, where nb is the number of rows
i such that h(xi) = b.

Notice that each nb is a counting query. If we answer each nb independently by the Laplace
mechanism with privacy parameter ε, our analysis of the product mechanism from last time allows
us to conclude that this mechanism M is |B|ε-private for the histogram query qh. In fact we can
prove a stronger claim.

Claim 1. M is 2ε-differentially private.

So the privacy of the mechanism does not depend at all on the number of buckets in the histogram.

In order to prove Claim 1, it helps to think of a histogram query qh as a vector-valued query taking
values in the vector space RB. Recall that the `1 distance between two vectors in v, v′ ∈ RB is the
number

∑
b∈B|vb − v′b|. We observe that if x and x′ are databases that differ in at most one row,

then the `1 distance between qh(x) and qh(x′) is at most two: Changing one row in a database can
at most shift one item from one bucket into another.

A query q : Dn → Rd is c-Lipschitz if for every pair of databases x, x′ that differ in at most one
row, the `1 distance between q(x) and q(x′) is at most c. Claim 1 now follows from the following
general theorem:
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Theorem 2. Let q : Dn → Rd be a c-Lipschitz integer valued query and M be the product of ε-
differentially private Laplace mechanisms over the entries of q. Then M is cε-differentially private.

Proof. Let x, x′ be databases that differ in at most one row and let ci = qi(x)− qi(x′). Then

Pr[M(x) = (y1, . . . , yd)] = Pr[q1(x) +N1 = y1] · · ·Pr[qd(x) +Nd = yd]

= Pr[N1 = y1 − q1(x)] · · ·Pr[Nd = yd − qd(x)]

≤ (eε|c1| Pr[N1 = y1 − q′1(x)]) · · · (eε|cd| Pr[N1 = y1 − q′1(x)])

= eε(|c1|+···+|cd|) Pr[N1 = y1 − q1(x′)] · · ·Pr[Nd = yd − qd(x′)]
= eε(|c1|+···+|cd|) Pr[M(x′) = (y1, . . . , yd)].

Because q is c-Lipschitz, |c1|+ · · ·+ |cd| ≤ c, and so M is cε-differentially private.

Most popular item

Suppose we have a database that describes whether a child likes a particular type of fruit:

likes apple orange banana

Alice yes yes no
Bob no yes yes
Charlie no yes no
Dave no yes yes
Erica no no yes

The query we want to answer is “What is the most popular fruit?” The correct answer is “orange”.
Giving out this answer directly is clearly not differentially private: If we change Charlie’s row of
preferences, the answer to the query may change to “banana”. Here is a private mechanism for
this task:

The Noisy Max mechanism. Given a database x ∈ Dn,

1. Calculate the number ni(x) of yes-queries for every column i.

2. Sample independent Lap(1/ε) random variables Ni, one for every column.

3. Output the column label i for which the value ni(x)+Ni is the largest. (In case of ties, choose
the first label among those that maximize the value ni(x) +Ni.)

In our example, napple = 1, norange = 4, nbanana = 3. If the sampled noise values are, say, Napple = 1,
Norange = −1, and Nbanana = −1, the mechanism would output “orange”. If, in contrast, Napple = 0,
Norange = −1, and Nbanana = 1, then the mechanism would output “banana”.

Theorem 3. The Noisy Max mechanism is 2ε-differentially private.
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Before we prove this theorem, here is an easy but useful lemma about the Laplace distribution.

Lemma 4. If N is a Lap(1/ε) random variable, then for every pair of integers n and k,

Pr[N > n] ≤ ekε Pr[N > n+ k] and Pr[N < n+ k] ≤ ekε Pr[N < n].

Proof Sketch for Theorem 3. For simplicity of notation, we will ignore the possibility of ties among
the values ni(x) + Ni. To turn this proof sketch into a real proof, you need to account for that
possibility. It is not too difficult to do so.

Let x and x′ be two neighboring databases. Then M(x) outputs i if and only the quantity nj(x)+Nj

is maximized at j = i, namely

Pr[M(x) = i] = Pr[ni(x) +Ni > nj(x) +Nj for all j 6= i]

= Pr[Ni > nj(x)− ni(x) +Nj for all j 6= i]

= Pr[Ni > maxj 6=i{nj(x)− ni(x) +Nj}]
= E

[
PrNi [Ni > maxj 6=i{nj(x)− ni(x) +Nj} | N−i]

]
.

where N−i denotes all random variables Nj except for Ni. By an analogous calculation

Pr[M(x′) = i] = E
[
PrNi [Ni > maxj 6=i{nj(x′)− ni(x′) +Nj} | N−i]

]
.

To complete the proof, we will show that for every fixing of N−i, the ratio of the two probabilities
is at most e2ε. When we replace x by x′, every term nj(x)−ni(x) +Nj can change by at most two,
so the maximum of all these terms can also change by at most two. It follows that

maxj 6=i{nj(x)− ni(x) +Nj} ≥ maxj 6=i{nj(x′)− ni(x′) +Nj} − 2

and so for every fixing of N−i,

PrNi [Ni > maxj 6=i{nj(x)− ni(x) +Nj} | N−i]
≤ PrNi [Ni > maxj 6=i{nj(x′)− ni(x′) +Nj} − 2 | N−i].

By Lemma 4, the last expression is at most e2ε PrNi [Ni > maxj 6=i{nj(x′)− ni(x′) +Nj} | N−i], as
desired.

2 The exponential mechanism

The exponential mechanism is a general mechanism for answering queries whose answers can take
values in an arbitrary range (not necessarily numerical). Let us illustrate it with an example.

Suppose we have an unlimited supply of pumpkins that we are trying to sell to Alice, Bob, and
Charlie. We allow each one of them to bid $1 or $2 for a pumpkin, and want to set the price of a
pumpkin so as to maximize our revenue.

For example, say we have the following database of bids:
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name bid

Alice $1
Bob $1
Charlie $2

If set the pumpkin price at $1, this is within everyone’s budget so collect $3 in revenue; if we set
the price at $2, only Charlie can afford to buy and so our revenue is $2 only. We can describe this
information as a utility function:

price utility

$1 $3
$2 $2

In general, the utility function depends both on the bids and on the price. If our objective is to
maximise revenue, we would set the pumpkin price at $1.

However, publishing the price might violate the privacy of the bidders. For example, suppose we
know Alice is poor (she can afford to spend only $1 on a pumpkin) and Charlie is rich (he can
easily bid $2), but we know nothing about Bob. Then the revenue maximising pumpkin price
reveals Bob’s budget.

The exponential mechanism is a general mechanism for setting prices in a manner that guarantees
differential privacy of the bidders. In fact, this mechanism works in a much more general setting,
which we now describe.

In general, we are interested in designing a mechanism for answering a query q that takes as input a
database x ∈ Dn and produces an output an element in some range of values R. To each database
x and range value r, there is an associated numerical utility score u(x, r).

In our example, q is the query “What is the price of a pumpkin?” and R is the range of possible
prices {$1, $2}. The utility is the profit in dollars; for the above database of bids x, u(x, $1) = 3
and u(x, $2) = 2.

We saw that choosing the outcome with the highest utility score is detrimental for privacy. The
exponential mechanism will sample the outcome from a probability distribution. The probability
of an an outcome will depend on its utility: The higher the utility, the more likely the outcome.

Let ∆u be the maximum of |u(x, r)− u(x′, r)| over all pairs of neighbouring databases x, x′ ∈ Dn

and all possible values r ∈ R.

The exponential mechanism. Given a database x and utility scores u(x, r) for every r ∈ R,
output r with probability proportional to exp(εu(x, r)/2∆u).

We will shortly prove that

Theorem 5. The exponential mechanism is ε-differentially private.

Before we do that, let’s see what the mechanism does for our pumpkins. First, we need to calculate
∆u. Since utility represents profit, this amounts to figuring out the following: For any fixed
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collection of bids (database) and pumpkin price (element in the range), by how much can our profit
be affected by a single person changing their bid? It is not difficult to see that the answer is $2,
so ∆u = 2. Thus the exponential mechanism will output a pumpkin price of $1 with probability
proportional to exp(3ε/4) and $2 with probability proportional to exp(ε/2). For ε = 0.2, a bid of
$1 happens with probability about 51% and a bid of $2 with probability about 49%.

This is almost like flipping a random coin to determine the price. To get a better feel about the
effect of the exponential mechanism, let’s take a larger example with a bigger gap in utilities.
Suppose you have 100 bidders for pumpkins, out of which 90 bid $1 and 10 bid $2, so the utility is
100 for a $1 price and 20 for a $2 price. If we want ε = 0.2, the exponential mechanism sets the
pumpkin price to $1 with probability 98.2% and to $2 with probability 1.8%.

Proof of Theorem 5. Let x and x′ be neighbouring databases and t ∈ R a possible outcome. Then

Pr[M(x) = t] =
exp(εu(x, t)/2∆u)∑
r∈R exp(εu(x, r)/2∆u)

≤ exp(ε(u(x′, t) + ∆u)/2∆u)∑
r∈R exp(ε(u(x′, r)−∆u)/2∆u)

=
exp(ε/2) · exp(εu(x′, t)/2∆u)∑

r∈R exp(−ε/2) · exp(εu(x′, r)/2∆u)

= exp(ε) · exp(εu(x′, t)/2∆u)∑
r∈R exp(εu(x′, r)/2∆u)

= exp(ε) · Pr[M(x′) = t].

While the exponential mechanism will not, in general, produce an output with maximum utility,
the following theorem gives a bound on the probability that the utility the mechanism outputs is
substantially smaller than the optimal one.

Theorem 6. For a given x, let u∗(x) be the maximum of u(x, r) over all r ∈ R. Then for every
t > 0, the probability that the exponential mechanism produces an output of utility smaller than
u∗(x)− t is less than |R| exp(−εt/2∆u).

Proof. Let E denote the exponential mechanism. Fix a database x. Then

Pr[E(x) < u∗(x)− t] =
∑

r∈R : u(x,r)<u∗(x)−t

Pr[E(x) = r]

=

∑
r∈R : u(x,r)<s exp(εu(x, r)/2∆u)∑

r exp(εu(x, r)/2∆u)
.

We can upper bound the numerator strictly by∑
r∈R : u(x,r)<u∗(x)−t

exp(εu(x, r)/2∆u) ≤
∑

r∈R : u(x,r)<s

exp(ε(u∗(x)−t)/2∆u) ≤ |R| exp(ε(u∗(x)−t)/2∆u)
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as there are at most |R| entries in the summation, and lower bound the denominator by∑
r

exp(εu(x, r)/2∆u) ≥ exp(εu∗(x)/2∆u)

by choosing the term in the summation that maximizes u(x, r). Combining the two, we get

Pr[E(x) < u∗(x)− t] < |R| exp(−εt/2∆u).

3 A mechanism for many counting queries

Consider what happens when you apply the product mechanism to d instances of the same counting
query q. Every time the answer is q(x) plus some noise, and the different instances of the noise are
statistically independent. By taking enough of them and averaging them one can obtain a very good
estimate of the value q(x), violating privacy. To make this argument a bit more quantitative, if the
noise is of standard deviation σ, then averaging the value of O(σ2) queries reduces the standard
deviation to a small constant. Since counting queries can only take integral values, after this many
queries the exact value q(x) is determined with high probability. (In the Laplace mechanism, σ is
the inverse of the privacy parameter ε, so O(1/ε2) queries suffice for this experiment to succeed.)

To avoid this type of privacy violation, it would be sensible to answer the same query identically,
and not independently, every time. More generally, to ensure privacy, related queries better result
in statistically correlated answers.

We consider the following general scenario. We want to design a differentially private mechanism
that provides accurate answers to a whole class of counting queries Q, which can be potentially
very large. Here is one possible design for such a mechanism: Given a (private) database x ∈ Dn,
the mechanism will use randomness to create a synthetic (fake) database y ∈ Dd and release all the
contents of y to the public. On the one hand, y will have a similar utility as x; when answering
queries from Q, it will not matter much whether x or y is used as the reference database. On the
other hand, releasing y will cause no privacy harm to the participants in x.

Blum, Ligett, and Roth came up with an ingenious way of choosing the database y. To explain
their solution, it helps to replace counting queries by the equivalent notion of averaging queries:
Given a counting query q over a database with n rows, the corresponding averaging query q outputs
the answer q(x) = q(x)/n. So the answer of an averaging query is always a number between 0 and
1. (We also use Q for the class of averaging queries corresponding to Q.) We will also think of the
number of rows d of the synthetic database as a number much smaller than the number of rows n
of the real database.

Let us start with the following question: Given x ∈ Dn, among all databases y ∈ Dd rows, which
is the one that gives the most accurate approximation to all the queries in Q? One formalization
of this question goes by defining a utility score u(x, y) that is higher the more similar x and y look
to the queries in Q:

u(x, y) = −maxq∈Q|q(x)− q(y)|.

If x and y give exactly the same answer to all the queries in Q, then u(x, y) = 0; otherwise u(x, y)
takes some negative value. The closer this value is to zero, the more similar x and y look to Q.
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We choose the synthetic database y by applying the exponential mechanism on input x and utilities
u. By Theorem 5, the mechanism is ε-differentially private. It remains to show that it is useful –
that is, the answers to queries in Q are typically similar; in other words, the mechanism typically
outputs a y that achieves high utility.

We will show high utility using Theorem 6. To apply this theorem, we need to first estimate the
value

u∗(x) = maxy u(x, y).

Claim 7. For every x ∈ Dn, there exists a y ∈ Dd such that u(x, y) ≥ −α whenever 2|Q| < e2dα
2
.

We will prove this claim later; let us first see what kind of utility it gives us. Combining Theorem 6
and Claim 7, we get that the mechanism produces an output of utility less than−2α with probability
at most

|R| exp(−εα/2∆u) ≤ |D|d exp(−εαn/4)

where we use the fact that there are |D|d entries in the range of y and the fact that ∆u ≤ 2/n:
Changing a row of x can affect the value q(x), and therefore also u(x, y), by at most 2/n. If we
choose the smallest possible value of d that satisfies Claim 7, we get an upper bound of

|D|O(log|Q|/α2) · exp(−εαn/4) = exp(−Ω(εαn))

on this probability, as long as α ≥ K(log|Q| log|D|/n)1/3 for a sufficiently large constant K. So if
n is sufficiently large, we can get simultaneous accuracy for very large sets of counting queries with
very high probability over the choice of y using this mechanism.

Proof of Claim 7 We prove this claim using the probabilistic method. We will need the following
form of the Chernoff bound:

Theorem 8 (Chernoff bound). Let X1, . . . , Xm be independent random variables taking values in
the range [0, 1] and X = (X1 + · · ·+Xm)/m. Then for every α > 0

Pr
[
X > E[X] + α

]
≤ e−2mα2

and Pr
[
X < E[X]− α

]
≤ e−2mα2

.

Proof of Claim 7. Fix x. We will show that if Y consists of a random sample of the rows of x,
where each row of Y is chosen uniformly and independently among all rows of x (with repetition),
then u(x, Y ) ≥ −α with probability strictly greater than zero over the choice of Y . Therefore such
a Y must exist.

Fix an averaging query q. Let Yi be an indicator random variable for the event that the i-th row of
y satisfies the predicate for the query q. Then Y1, . . . , Yd are independent {0, 1} random variables
and by the Chernoff bound,

Pr[|Y − E[Y ]| > α] ≤ 2e−2d/α
2
.

where Y = (Y1 + · · ·+ Yd)/d = q(Y ). Since each Yi is a uniformly random row of x, it satisfies the
predicate of q with probability q(x), and so E[Y ] = q(x). So the last inequality says

Pr[|q(Y )− q(x)| > α] ≤ 2e−2d/α
2
.
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Taking a union bound over all q ∈ Q, we get that

Pr[|q(Y )− q(x)| > α for some q ∈ Q] ≤ |Q| · 2e−2dα2
.

By our condition on α, the quantity 2|Q|e−2dα2
is strictly less than one. In this case, the probability

of the complement event |q(Y )− q(x)| ≤ α for all q in Q is strictly greater than zero, so such a Y
must exist.
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