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In this lecture we show strong evidence that it is in general computationally hard to answer poly-
nomially many (in the number of rows) counting queries in a differentially private manner.

More precisely, we will show that for every efficient non-interactive mechanism there exist a collec-
tion of counting queries whose answers can be easily computed from the database itself, but the
mechanism cannot produce both differentially private and accurate answers to these queries, under
the assumption that pseudorandom generators exist.

Before we state and prove the main result, we take a detour to introduce fingerprinting codes, an
object that will play a main role in the construction of the “hard” queries Q.

1 Fingerprinting codes

A string f ∈ {0, 1}m is a fingerprint of matrix W ∈ {0, 1}n×m if for every index j ∈ [m] and bit
b ∈ {0, 1}, if all the entries of the j-th column of W are equal to b, then fj is also equal to b. For
example, the strings (0, 0, 1), (0, 1, 1) are fingerprints of the matrix

W =

[
0 0 1
0 1 1

]
but the string (1, 1, 1) is not a fingerprint of this matrix.

Given a value of n, we would like to design a matrix W such that for any submatrix W−i obtained
by erasing a single row of W , a fingerprint of W−i identifies at least one of its rows. For n = 2, the
above matrix W is such an example. However, even for n = 3 no such matrix W exists: Given any
W ∈ {0, 1}3×m, let f ∈ {0, 1}m be the string that in position j contains the majority value of the
3 bits present in the j-th column of W . Then f is a fingerprint for any one of the three relevant
submatrices of W . Fingreprinting codes bypass this obstacle by allowing for a probabilistic choice
of the matrix W .

A n × m fingerprinting code is a distribution D over pairs (µ,W ) consisting of a private key µ
and an n ×m matrix W and a pointing algorithm P that takes as inputs µ,W , and a fingerprint
f ∈ {0, 1}m and outputs an index i ∈ [n] (it points to a row of the matrix) or the special symbol
⊥.

Definition 1. The fingerprinting code (D, P ) has completeness gap c if for every algorithm F that
on input W outputs a fingerprint of W , Pr(µ,W )∼D[P (µ,W,F (W )) = ⊥] ≤ c.

The fingerprinting code (D, P ) has soundness gap s if for every i ∈ [n] and every algorithm A,
Pr(µ,W )∼D[P (µ,W,A(W−i)) = i] ≤ s, where W−i is the matrix obtained by erasing the i-th row of
W .

A soundness gap of 1/n is trivial to achieve if the fingerprint checker outputs a uniformly random
index i. We now show a clever construction that does (much) better.
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To state and analyze the construction we need a couple of concepts from probability and analysis.
It will be easier to work with matrices whose entries are 1,−1 instead of 0, 1. For µ ∈ [−1, 1], a
µ-biased random variable X ∼ {−1, 1}µ takes values 1,−1 and has expected value µ, namely

X =

{
1 with probability (1 + µ)/2

−1 with probability (1− µ)/2.

The character of X is the function φµ : {−1, 1} → R given by

φµ(x) =
x− E[X]√

Var[X]
=

x− µ√
1− µ2

=

{√
(1− µ)/(1 + µ), if x = 1,

−
√

(1 + µ)/(1− µ), if x = −1.

The random variable φµ(X) has mean 0 and variance 1, i.e., E[φµ(X)] = 0 and E[φµ(X)2] = 1.
Here are the graphs of φµ(1) (top, blue) and φµ(−1) (bottom, red) as functions of µ.

µ
−1 1

Construction of fingerprinting codes Let P be a probability distribution over the interval
[−1, 1] to be specified later.

• The private key µ is a vector (µ1, . . . , µm) ∈ [−1, 1]n, one for each column of W , where each
µj is a random sample from P, independent of the others.

• The matrix W consists of independent {0, 1} entries, where the entries Wij in column j come
from the distribution {−1, 1}µj .

• The pointing algorithm P (µ,W, f) outputs any i such that

m∑
j=1

fj · φµj (Wij) ≥ t
√
m

if such an i exists and ⊥ otherwise.
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Analysis We now show that for t = 10
√
n, this fingerprinting code has length m = O(n3),

completeness gap 1/4, and soundness gap 1/100n. (In fact it is possible to improve the analysis so
that the same completeness and soundness are achievable with m = O(n2poly log n).)

Theorem 2 (Soundness). For any P, (D, P ) has soundness gap at most 1/t2.

Proof. Since A(W−i) does not see the i-th row of W , the random variables Wij are independent of
the string f = A(W−i). For any fixed p and f ∈ {−1, 1}n, we then have

EWi

m∑
j=1

fj · φpj (Wij) =
m∑
j=1

fj · E[φpj (Wij)] = 0

and because Wij and Wij′ are independent when j 6= j′,

EWi

( m∑
j=1

fj · φpj (Wij)
)2

=
m∑
j=1

f2j · E[φpj (Wij)
2] = m.

Soundness follows by Chebyshev’s inequality applied to the random variable
∑m

j=1 fj ·φpj (Wij).

To prove completeness we set P to the following distribution: First, choose a uniformly random
θ ∼ [0, π], then output µ = cos θ. Here is the graph of the probability density function of µ. The
distribution favors values of µ that are close to -1 or 1, in which case the corresponding column of
W is more likely to leave a fingerprint.

µ
−1 1

Theorem 3 (Completeness). If m ≥ n2t2/2 then (D, P ) has completeness gap at most 1/4.

Proof. Let fj be the j-th bit of the fingerprint F (W−i). We will upper bound the probability that

Y =
n∑
i=1

m∑
j=1

fjφµj (Wij) < nt
√
m

by 1/4. If this condition fails, there must exists at least one row i for which
∑m

j=1 fjφµj (Wij) ≥ t
√
m,

establishing completeness.
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By linearity of expectation,

E[Y ] =

m∑
j=1

E
[
fj
∑n

i=1
φµj (Wij)

]
.

If we fix j and all the entries of p and W except for their j-th components, then fj is a boolean-
valued function of the bits W1j ,W2j , . . . ,Wnj comprising the j-th column of W . Since F is a
fingerprinting algorithm, this function must evaluate to −1 when all these bits are −1 and to 1
when all these bits are 1. Lemma 4 below shows that under such restrictions, the expectation in
question evaluates to 2, so the sum equals 2m.

We now upper bound Var[Y ]. First, for any fixed j, fj ∈ {−1, 1} so,

Var
[
fj
∑n

i=1
φµj (Wij)

]
≤ E

[(
fj
∑n

i=1
φµj (Wij)

)2]
= E

[(∑n

i=1
φµj (Wij)

)2]
= n

because the random variables φµj (Wij) are independent with mean 1. When j 6= j′, the covariance
of any two random variables fj

∑n
i=1 φµj (Wij) and fj′

∑n
i=1 φµj′ (Wij′) equals

E
[(
fj
∑n

i=1
φµj (Wij)

)(
fj′
∑n

i=1
φµj′ (Wij′)

)]
− E

[
fj
∑n

i=1
φµj (Wij)

][
fj′
∑n

i=1
φµj′ (Wij′)

]
= EW

[
fjfj′ Eµj

[∑n

i=1
φµj (Wij)

∣∣∣W]Eµj′

[∑n

i=1
φµj′ (Wij′)

∣∣∣W]]− 4.

Among all functions fj , f
′
j that map W to −1 or 1, the outer expectation is maximized by choosing

fj to equal the sign of E[
∑n

i=1 φµj (Wij) | W ] and fj′ to equal the sign of E[
∑n

i=1 φµj (Wij′) | W ].
Then fj and fj′ are independent random variables and the desired covariance equals zero. So all
covariances are zero or negative.

It follows that Var[Y ] ≤ m · n. By Chebyshev’s inequality,

Pr[Y < nt
√
m] ≤ Pr[Y − 2m < 2

√
mn] ≤ Pr[Y − E[Y ] < 2

√
Var[Y ]] <

1

4

as desired.

Lemma 4. For any function f : {−1, 1}n → {−1, 1} such that f(−1n) = −1 and f(1n) = 1,

Eµ∼P,X∼{−1,1}np

[(∑n

i=1
φµ(Xi)

)
f(X1, . . . , Xn)

]
= 2.

The proof of this Lemma uses the Margulis-Russo formula which says that for any function
f : {−1, 1}n → R, any µ and X ∼ {−1, 1}nµ

d

dµ
E[f(X1, . . . , Xn)] =

1√
1− µ2

E
[(∑n

i=1
φµ(Xi)

)
f(X1, . . . , Xn)

]
.

A proof of this formula using a bit of Fourier analysis is given in the appendix.
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Proof of Lemma 4. Let g(µ) = d
dµ E[f(X1, . . . , Xn)] where X1, . . . , Xn are independent {−1, 1}p

random variables. By the fundamental theorem of calculus,∫ 1

−1
g(µ)dµ = f(1n)− f(−1n) = 1− (−1) = 2.

By the Margulis-Russo formula the expression of interest equals

Eµ∼P
[√

1− µ2g(µ)
]

=

∫ π

0
(sin θ)g(cos θ)dθ = −

∫ −1
1

g(µ)dµ = 2.

2 Private data release requires short rows

As a warmup towards the main result, we prove a statistical limitation of private data release:
Private and accurate data release is impossible for databases with long rows.

Theorem 5. If a (n,m)-fingerprinting code with completeness gap 1/4 and soundness gap 1/6n
exists, then no mechanism for n-row databases over a domain of size 2m for m counting queries is
better than n/2-accurate and (1, 0.1)-differentially private.

We will consider databases with n rows over domain D = {0, 1}m; we can then view the database
as a matrix K ∈ {0, 1}n×m.

To each matrix Z ∈ {0, 1}n×m we associate m counting queries QZ = (q1, . . . , qm), where the j-th
query qj counts the number of entries in which the j-th column of W and the j-th column of K
differ, i.e.

qj(X) = |{i : Kij 6= Zij}|.

Suppose M is a (1, 1/4n)-differentially private mechanism for counting queries. We instantiate M
on database X and queries QK⊕W , where K ∼ {0, 1}n×m is a uniformly random matrix, W ∼ D is
a sample from the fingerprinting code (D, F ), and K ⊕W is the bitwise XOR of the entries of K
and W .

The true answer to qj is the number of rows i such that Kij 6= Kij ⊕Wij , that is the number of
one entries of the j-th column of W . This number is n for a column of ones and 0 for a column of
zeros.

Let Round be an algorithm that “rounds” the corresponding answers of M : It takes as its input
answers a1, . . . , am to q1, . . . , qm and outputs a vector in {0, 1}m that has 1 in position j if aj > n/2
and 0 if aj < n/2. If M has accuracy better than n/2, then Round(M(K,QK⊕W )) must be a
fingerprint of W . By the completeness of the fingerprinting code,

Pr(µ,W )∼D;K∼{0,1}n×m [P (µ,W,Round(M(K,QK⊕W ))) 6= ⊥] ≥ 3

4
.

If i∗ be a uniformly random chosen index from the set [n], then

Pr(µ,W )∼D;K [P (µ,W,Round(M(K,QK⊕W ))) = i∗] ≥ 3

4n
.
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Now let K∗ be the database obtained by replacing the i∗-th row of K by a uniformly random row.
By the differential privacy of M

3

4n
≤ e · Pr(µ,W )∼D;K,K∗ [P (µ,W,Round(M(K∗, QK⊕W ))) = i∗] +

1

4n

from where

Pr(µ,W )∼D;K,K∗ [P (µ,W,Round(M(K∗, QK⊕W ))) = i∗] ≥ 1

2en
. (1)

The i∗-th row of the matrix K⊕W is now statistically independent of the database K∗, so if W−i∗

is the matrix obtained by zeroing out the i∗-th row of W , then

(K∗,K ⊕W ) and (K∗,K ⊕W−i∗) are identically distributed.

Let A be an adversary that on input a matrix of the form W−i∗ generates a random pair K,K∗

that differ in row i∗ and outputs Round(M(K∗, QK⊕W−i∗ )). Then

Pr(µ,W )∼D;A[P (µ,W,A(W−i∗)) = i∗] ≥ 1

2en

violating the 1/6n-soundness gap of the fingerprinting code (D, P ). Therefore M could not have
been (1, 1/4n)-differentially private.

3 Counting queries are hard to answer privately

To reduce the size of the domain, we replace the random rows of the matrix K by pseudorandom
strings. This should not affect the analysis as long as all algorithms are efficient, so they do not
distinguish random strings from pseudorandom ones. However, pseudorandom strings have a much
shorter description, so much less information will need to be encoded in the database.

To state the construction formally and explain the proof we need to make use of pseudorandom
generators. The definition here is a bit informal.

Definition 6. An efficient deterministic algorithm G : {0, 1}k → {0, 1}m, where m > k, is an
ε-pseudorandom generator if for every efficient decision procedure D,∣∣PrK∼{0,1}k [D(G(X)) accepts]− PrY∼{0,1}m [D(Y ) accepts]

∣∣ ≤ ε.
In words, no efficient adversary D can distinguish outputs of G(X) — which are statistically far
from uniformly random, as they contain only n < m bits of information — from uniformly random
strings of the same length.

We will model an efficient mechanism as an efficient randomized algorithm that takes as input
a database x and a sequence of queries Q = (q1, . . . , qm) and outputs a sequence of answers
(a1, . . . , am). The mechanism M is computationally (ε, δ)-differentially private if for every efficient,
randomized, decision procedure T and every pair of adjacent databases x and x′,

Pr[T (M(x)) accepts] ≤ eε Pr[T (M(x)) accepts] + δ.
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Theorem 7. Assume there exist a 1/20n-pseudorandom generator G : {0, 1}k → {0, 1}m and a
(n,m)-fingerprinting code with completeness gap 1/4 and soundness gap 1/20n. Then no computa-
tionally efficient mechanism for n-row databases over a domain of size 2k for m counting queries
is better than n/2-accurate and computationally (1, 0.1)-differentially private.

The difference from Theorem 5 is that the database size is now 2k, which can be much less than
2m. If our notion of efficiency is “polynomial time” and m is polynomial in n then it is believed
that pseudorandom generators exist for k = ω(log n) and n sufficiently large.

The proof of Theorem 7 is very similar to the proof of Theorem 5. We explain the differences
only. As before, the database K will be chosen at random from {0, 1}n×k, the matrix W will be
chosen at random from D, but now the j-th query will ask for the number of rows i such that
G(Ki)j 6= Zij . The matrix Z is instantiated by G(K) ⊕W , where G(K) is the matrix with rows
G(K1), . . . , G(Kn).

Apart from a change in notation, the reasoning is now exactly the same up to equation (1), which
now gives

Pr(µ,W )∼D;K,K∗ [P (µ,W,Round(M(K∗, QG(K)⊕W ))) = i∗] ≥ 1

2en
.

However, it is no longer true that (K∗, G(K)⊕W ) and (K∗, G(K)⊕W−i∗) are identically distributed
becauseG(Ki∗) is not uniformly random. By the pseudorandomness ofG, and a bit of manipulation,
it still holds that for any efficent D,∣∣Pr[D(K∗, G(K)⊕W ) accepts]− Pr[D(K∗, G(K)⊕W−i∗) accepts]

∣∣ ≤ 1

10n
.

Since the condition P (µ,W,Round(M(?,Q?))) = i∗ is efficiently checkable, we can conclude that

Pr(µ,W )∼D;K,K∗ [P (µ,W,Round(M(K∗, QG(K)⊕W−i∗ ))) = i∗] ≥ 1

2en
− 1

10n
≥ 1

20n

which is the same as

Pr(µ,W )∼D;A[P (µ,W,A(W−i∗)) = i∗] ≥ 1

20n

violating the soundness of the fingerprinting code.

A Proof of the Margulis-Russo formula

We first prove the formula for the case n = 1 and f(x) = x. Then

d

dp
E[X] =

d

dµ
µ = 1

and

E[φµ(X) ·X] = E

[
X − E[X]√

Var[X]
·X
]

=
E[X2]− E[X]2√

Var[X]
=
√

Var[X] =
√

1− µ2

so the formula holds in this case.
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Next, we consider the case f(x1, . . . , xn) =
∏
i∈S xi for some S ⊆ [n]. Then

d

dµ
E
[∏

i∈S
Xi

]
=

d

dµ

∏
i∈S

E[Xi]

=
∑
i∈S

(∏
j∈S−{i}

E[Xj ]
) d
dµ

E[Xi]

=
∑
i∈S

(∏
j∈S−{i}

E[Xj ]
) 1√

1− µ2
E[φµ(Xi) ·Xi]

=
1√

1− µ2
∑
i∈S

E
[
φµ(Xi)

∏
j∈S

Xj

]
=

1√
1− µ2

E
[(∑n

i=1
φµ(Xi)

)∏
j∈S

Xj

]
.

Finally, by Fourier expansion any function f : {0, 1}n → R can be written as a linear combination
of the functions χS as S ranges over all subsets of [n], so the Margulis-Russo formula for general
functions follows by linearity of the derivative d/dµ and expectation E[·].
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