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We consider the following scenario from game theory: n selfish players want to select a common,
public outcome a among a set A of alternatives. Each player i has a private valuation function
vi : A → R which assigns a numerical value vi(a) to every possible alternative a ∈ A. When A is
finite, the valuation funtion can be described as a vector of values (vi(a))a∈A in RA.

To make the selection, the players engage in a game g : (RA)n → A that asks each player i for a
strategy si : A → R and outputs an outcome in A. The game is publicly known and is carried out
by a party that is trusted to follow the correct instructions and not reveal any information apart
from the outcome. The objective of each player is to maximize his valuation of the outcome: To
do so, he may choose to submit a preference si that is different from his true valuation vi.

For example, in an election with n voters and two candidates Alice and Bob, each voter’s valuation
function describes how much he likes each candidate. For example, my valuation function might
be vAndrej(Alice) = 50 and vAndrej(Bob) = −100. From an economist’s point of view, Alice winning
the election would make me feel as happy as if I had won 50 dollars, while Bob winning would make
me feel as unhappy as if I had lost 100.

If the election rule is to select the candidate that is more valued by the majority of the voters

g(s1, . . . , sn) =

{
Alice, if si(Alice) > si(Bob) for a majority of i’s

Bob, if not

then each voter has an incentive to provide his real valuation vi as his strategy si: Regardless of
what the other voters do can only make the election of his preferred candidate more likely. This is
very desirable feature of the majority vote.

Definition 1. Strategy s∗i is a dominant strategy for player i in game g if for every choice of
strategies s1, . . . , sn,

ui(g(s1, . . . , si−1, s
∗
i , si+1, . . . , sn)) ≥ ui(g(s1, . . . , si−1, si, si+1, . . . , sn)).

The strategy si = vi is called truthful. A game g is dominant strategy truthful if for each player the
truthful strategy is a dominant strategy.

Unfortunately few interesting games are dominant strategy truthful. An example of one that is
not is a three candidate election decided by plurality vote (you can work out why). One of our
examples will achieve a relaxed notion of truthfulness. The other one will assume a more general
model of a game in which payments can be made to “buy” utility.

Game-theoretic mechanism design is concerned with the design of games whose outcome meets
certain requirements. For example, we might want to design an election that guarantees some
aggregate happiness among the voters.
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1 Digital goods auctions

In a digital goods auction, I have an unlimited number of copies of a product I would like to sell,
for example a digital photograph or a piece of software. The alternatives are the possible prices p
I can set for my item; each price is a number in the interval [0, 1].

Player i’s valuation describes how much he would value owning the item if it was sold at price x.
Let us assume for simplicity (as it won’t make difference) that player i’s violation is completely
described by a secret cutoff value vi ∈ [0, 1] so that

vi(x) =

{
vi − x, if x ≤ vi
0, if x > vi.

The objective of a digital goods auction is to maximize the revenue from all the players

f(v, p) = p · (number of players that buy at price p) = p · |{i : vi ≥ p}|.

For this purpose, I solicit the utilities from all the players and reveal a price for the product. If my
mechanism outputs the value of p that maximizes f(s, p) then an player has an incentive to bid a
value si smaller than vi.

Unfortunately no mechanism (except one that outputs a fixed price disregarding its inputs) of this
form is dominant strategy truthful. Differential privacy can help us achieve an approximate notion
of truthfulness.

Definition 2. A strategy s∗i is ε-approximately dominant for player i in game g if for every choice
of strategies s1, . . . , sn,

vi(g(s1, . . . , si−1, s
∗
i , si+1, . . . , sn)) ≥ e−εvi(g(s1, . . . , si−1, si, si+1, . . . , sn)).

A game is ε-approximately dominant strategy truthful if being truthful is an ε-approximately
dominant strategy for every player.

This definition gives some incentive to players to misreport their utilities, but they can never gain
more than an ε-fraction of utility by doing so. One interpretation is that if I value telling the truth
by an amount of about ε then being truthful is a (truly) dominant strategy.

To understand why optimizing f is not approximately dominant strategy truthful, suppose half
the other players have valuation 1 and the other half have valuation 1/2. Then my effect of on the
optimal value of f is significant. Without my presence, the prices p = 1/2 and p = 1 would yield
the same revenue, so my bid essentially determines the price that is chosen. However, my bid has
little effect on the overall revenue. If we can ensure that no single bid significantly influences the
outcome then I wouldn’t have much of an incentive to underbid.

We now describe a mechanism that achieves approximate dominant strategy truthfulness and out-
puts an approximately optimal price with high probability. We will set the parameters ε and K
later.
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Mechanism A: On input s = (s1, . . . , sn) ∈ [0, 1]n,
For every integer k ∈ [K] calculate pi = exp(εf(s, k/K)).
Output the price k/K with probability proportional to pi.

In other words, the price is chosen by applying the exponential mechanism with utility function f .
The function f is 1-Lipschitz in the inputs s1, . . . , sn (for any value of p = k/K), so by Theorem 5
from Lecture 2, so mechanism A is ε-differentially private.

Theorem 3. If a mechanism M is ε-differentially private then any strategy for any player is
ε-approximately dominant in expectation over the randomness of the mechanism.

In particular, being truthful is an ε-approximately dominant strategy.

Proof. Let s∗i , si be any pair of strategies for player i. We will write (si, s−i) as a shorthand for
(s1, . . . , si, . . . , sn).

E[vi(M(si, s−i))] =
∑
a

vi(a) Pr[M(si, s−i) = a]

≤
∑
a

vi(a)eε Pr[M(s∗i , s−i) = a]

= eε E[vi(M(s∗i , s−i))].

We now show that this mechanism achieves close to optimal revenue. Letting ` denote the loss in
revenue we are willing to tolerate, we set K = 2n/` and show that

Theorem 4. Let p∗ be the price that maximizes the revenue f(v, p). Then for every `

Pr[f(v,A(v)) < f(v, p∗)− `] < 2n

`
exp(−ε`).

For ` = (1/ε) log n, the probability that the mechanism loses more than ` units of revenue vanishes
as n grows.

Proof. Let k be the largest integer so that k/K ≤ p∗. Then f(k/K, v) is at least f(p∗) − n/K
because each player that buys at price p∗ will also buy at price k/K, while selling at this lower
price will incur a loss of at most 1/K of his revenue. By Theorem 6 from Lecture 2, the probability
that A produces an outcome of utility smaller than f(k/K, v)−t is less than K exp(−εt/2). Setting
t = n/K proves the theorem.

2 Payments and social welfare

A mechanism with payments produces, in addition to an outcome, a payment pi ∈ R to be billed
to player i.



4

Suppose I want to give away a painting; my objective is not to make money but to award it to the
player who values it the most. Player i has a valuation vi > 0 for the painting. The player’s utility
equals vi − pi if he gets the painting at price pi and zero if he doesn’t get the painting.

One possibility is to ask every player to report their valuation and award the painting for free to
the player that makes the highest bid. This is clearly not dominant strategy truthful as players
have an incentive to overreport. Another possibility is to give the painting to the player with the
highest bid and charge him the amount he bid. Then a player may have an incentive to underreport
if he thinks he can get the painting for less.

The Vickrey auction mechanism awards the painting to the player that submits the highest bid and
charges him the amount of the second highest bid. This mechanism is dominant strategy truthful
by a case analysis. Take any player i and consider an arbitrary strategy for the other players; let b
be their largest among their bids.

• If b > vi then player i’s overall utility from winning would be negative, so bidding vi and not
winning can only improve his utility;

• If b ≤ vi then bidding any value above b will bring player i same overall utility as bidding vi;
bidding any value below b will bring him zero utility, while a truthful bid of vi brings him
positive utility.

Publishing the winner of an auction entails a loss of privacy which may affect the player’s valuation
of the outcome. For example, although I really value the painting, it would be quite embarrassing
for me if it was discovered how much I spent on it. I could set my valuation lower to reflect the cost
of this embarrassment. However, if privacy considerations were taken into account in the design of
the mechanism then my embarrassment would be avoided (or at least mitigated) resulting in higher
utility. As an extreme example, if the mechanism was a lottery which assigns the painting to a
random player at no cost then there would be no embarrassment at all in winning the painting.

In general it may be desirable to strike a balance between achieving a socially valuable objective
(giving the painting away to the player who values it the most) and preserving the privacy of the
players. To explain we first extend the Vickrey auction to a setting with arbitrary outcomes where
the objective is to maximize social welfare.

The Vickrey-Clarke-Groves mechanism

Let A be a set of alternatives. An n-player mechanism with payments is a game g : (RA)n → A
together with payment functions p1, . . . , pn : (RA)n → R.

In the Vickrey auction the alternatives are A = {1, . . . , n} where alternative i means “player i gets
the painting”, g(s1, . . . , sn) chooses an i that maximizes si, pi is the second largest value among
s1, . . . , sn, and pj = 0 for j 6= i.

For a collection of valuations v1, . . . , vn and an outcome a the social welfare is the value v1(a) +
· · ·+vn(a). In the Vickrey auction, social welfare is maximized by giving the painting to the player
with the highest valuation.
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For a game with payments, dominant strategy truthfulness means that the utility I extract after
making the payment is highest for the truthful strategy, regardless of other players’ strategies.

Definition 5. A strategy s∗i is dominant for player i in a mechanism with payments if for every
choice of strategies s1, . . . , sn,

vi(g(s∗i , s−i))− pi(s∗i , s−i) ≥ vi(g(si, s−i))− pi(si, s−i).

The mechanism is dominant strategy truthful if for every player the truthful strategy is a dominant
strategy.

The Vickrey-Clarke-Groves (VCG) mechanism is a dominant strategy truthful mechanism that
chooses the outcome with maximum social welfare. It has two additional desirable features: pay-
ments are always positive (I cannot “make money” just by participating) and utilities are always
positive (I cannot lose value by participating).

Mechanism V CG: On input s1, . . . , sn ∈ RA,
Output an outcome a∗ ∈ A that maximizes the social welfare

∑
i si(a

∗).
Charge player i a payment of pi = maxa∈A

∑
j 6=i sj(a)−

∑
j 6=i sj(a

∗).

In words, the payment of player i is the maximum social welfare if player i didn’t participate minus
the social welfare of the others when player i is present; this value is nonnegative and always smaller
than player’s reported valuation si(a

∗).

Theorem 6. Mechanism V CG is dominant strategy truthful.

Proof. More generally, we will show that for any choice of functions h−1, . . . , h−n, where h−i does
not depend on si, a payment of pi(s) = h−i−

∑
j 6=i sj(a

∗) to player i is dominant strategy truthful.
Player i’s utility is

vi(a
∗) +

∑
j 6=i

sj(a
∗)− h−i(s) ≤ maxa∈A

(
vi(a) +

∑
j 6=i

sj(a)
)
− h−i(s)

The maximum on the right hand side is attained for a = V CG(vi, s−i), namely when player i’s
strategy is vi.

3 Private optimization of social welfare

The VCG mechanism is deterministic so it is clearly not private. A natural idea towards privacy is
to randomize the choice of outcome, but give more weight to outcomes that achieve higher social
welfare. This brings to mind the exponential mechanism:

Mechanism PrivateV CG: On input s1, . . . , sn ∈ RA,
Output outcome a ∈ A with probability D(a) = 1

Z exp
(
(ε/2)

∑
i si(a)

)
.

For each player i,
Let D−i be the distribution that assigns probability 1

Z−i
exp
(
(ε/2)

∑
j 6=i sj(a)

)
to outcome a.

Charge player i a payment of pi where
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pi = Ea∼D−i

[∑
j 6=i

sj(a)
]
− Ea∼D

[∑
j 6=i

sj(a)
]

+
2

ε
(H(D−i)−H(D)).

Here H(D) is the natural entropy of the distribution D:

H(D) = Ea∼D[− lnD(a)].

and Z and Z−i are normalization constants so that the probabilities add to one. The curious choice
of prices will come out naturally from the analysis.

The outcome of PrivateV GC(s) is chosen from the exponential mechanism with utility function
Soc(s, a) =

∑
i si(a). Assuming the strategies are bounded (i.e. si(a) ∈ [0, 1]), Soc is 1-sensitive so

the mechanism is ε-differentially private and close to optimal in social welfare (if there are not too
many alternatives):

Pr[PrivateV CG(s) < V CG(s)− `] < |A| exp(−ε`/2).

Theorem 7. Mechanism PrivateV CG is dominant strategy truthful in expectation. Moreover,
0 ≤ pi ≤ E[si(PrivateV CG(s))] for every player i.

The proof of this theorem relies on the following lemma, which can be proved using calculus.

Lemma 8. For any λ > 0, any finite set A, and any function F : A→ R, the quantity Ea∼D[F (a)]+
(1/λ)H(D) is maximized by the distribution D over A that chooses outcome a ∈ A with probability
proportional to exp(λF (a)).

Proof of Theorem 7. Let A be the set of probability distributions over the set A. Consider the
VCG mechanism for choosing an alternative D ∈ A with n+1 players and the following valuations:
The valuation of player i ∈ {1, . . . , n} is vi(D) = Ea∼D[vi(a)] and the valuation of player n + 1 is
vn+1(D) = (2/ε)H(D).

The outcome of this mechanism is the distribution D that maximizes the social welfare

Soc(D) =
n+1∑
i=1

si(D) = Ea∼D

[∑n

i=1
si(a)

]
+

2

ε
H(D)

which by Lemma 8 is exactly the distribution D(a) = 1
Z exp((ε/2)

∑n
i=1 si(a)). Therefore the

expected social welfare of the outcome of PrivateV CG(s) equals the social welfare of the outcome
of V GC(s).

By a similar argument, the payment by player i in PrivateV CG(s) equals the payment by player
i in V CG(s). By Theorem 6 the VCG mechanism is dominant strategy truthful, so PrivateV CG
is dominant strategy truthful in expectation. The “moreover” part follows from the fact that VCG
payments are nonnegative and bounded by the players’ reported valuations.

One unsatisfying aspect of Theorem 7 is that it only gives nonnegative utility in expectation. I
don’t know if it is possible to strengthen this guarantee to hold with probability 1.
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