
CSCI 5520: Foundations of Data Privacy Lecture 10
The Chinese University of Hong Kong, Spring 2015 17 March 2015

One of the main tasks in learning theory is to predict the behavior of future data based on obser-
vations of past data. For example, if you have observed the input-output pairs

input output

2 4
4 16
1 1
9 81

you may conclude that you are looking at the function f(t) = t2 and can predict the value of any
future input of your choice.

Learning methods are usually robust in the sense that their outcome does not depend on the
presence of any particular data item. Unlike in other settings where we had to work (hard) to
achieve private data release, in learning privacy sometimes comes for free or with just a little bit
of extra work.

1 Private and probably approximately correct

We now consider a model where the objective is to learn an unknown Boolean function f : {0, 1}d →
{0, 1} coming from some class C. The past data consists of independent random input-output pairs
of the form (r, f(r)) where r is sampled from some distribution D.

In approximately correct learning, we want to use this data to learn f well enough in order to
predict most future values f(r) where r is sampled from D.

For example, suppose C is the set of ANDs over all possible 2d subsets of the input bits:

C =
{
f : f(r) = ∧i∈Sri, S ⊆ [d]

}
and D is the uniform distribution over {0, 1}n. Suppose d = 6 and we observe the data items:

r f(r)

001011 1

000000 0

000010 1

We can conclude that f(r) = r5 as this is the only function in C that is consistent with the data.
On the other hand, if we observe

1

2

r f(r)

001011 0

010110 0

100010 0

110100 0

000100 0

then there are several functions in C that are consistent with the data, but we can at least rule
out the possibilities that f(r) equals any of the functions 1, r1, r2, r3, r4, r5, or r6. If we make the
hypothesis f(r) = r1 ∧ · · · ∧ r6, our prediction may not always be accurate but we can be sure to
be correct at least 3/4 of the time.

The fundamental theorem of probably approximately correct (PAC) learning states that a moderate
amount of data is sufficient to produce an approximately correct hypothesis, with high probability
over the choice of the data.

Let x = ((x1, y1), . . . , (xn, yn)) ∈ ({0, 1}d+1)n be a database of possible input-output pairs. We say
a hypothesis function h ∈ C is consistent with x if h(xi) = yi for every i between 1 and n.

Theorem 1. For every class C, function f ∈ C, distribution D, and database x consisting of
n = 2(ln|C|)/α i.i.d. samples of the form (xi, f(xi)), xi ∼ D,

Prx
[
Prr∼D[h(r) = f(r)] ≥ 1− α

]
≥ 1− e−αn/2.

where h ∈ C is any function consistent with x.

Proof. Fix f and let BAD be the subset of C consisting of those h such that Prr∼D[h(r) 6= f(r)] >
α. Then

Prx[there exists h ∈ BAD that is consistent with x] ≤
∑

h∈BAD
Pr[h is consistent with x]

=
∑

h∈BAD
Pr[h(xi) = f(xi) for all i ∈ [n]]

<
∑

h∈BAD
(1− α)n

≤ |C|(1− α)n

≤ eln|C|−αn.

Choosing n = 2 ln|C|/α gives the desired bound.

What about differential privacy? A reasonable model for privacy is to view the database as private
and the hypothesis as public. To obtain privacy we should randomize the choice of hypothesis. To
preserve accuracy, Theorem 1 suggests that we should favor those hypotheses that are consistent
with the database. To this end we represent utility by a consistency score

u(x, h) = −|{i : h(xi) 6= yi}|.

3

The highest utility score of zero is given to those h that are consistent with x; each inconsistency
is penalized by −1. The sensitivity of u is at 1 as changing one row of the database can create at
most one additional inconsistency with respect to a fixed hypothesis. It follows that the exponential
mechanism, which chooses hypothesis h with probability proportional to exp(εu(x, h)/2), is ε-
differentially private.

What about the accuracy of this mechanism? By Theorem 6 from Lecture 2, the probability that
u(x, h) is smaller than −αn/2 — that is, that the hypothesis has more than αn/2 inconsistencies
with respect to x — is at most |C|e−εαn/4. Using the same definition of BAD, we reason as in the
proof of Theorem 1:

Prx[∃h ∈ BAD s.t. u(x, h) ≥ −αn/2] ≤
∑

h∈BAD
Pr[u(x, h) ≥ −αn/2]

=
∑

h∈BAD
Pr[h(xi) 6= f(xi) for at most αn/2 rows i]

<
∑

h∈BAD
e−α

2n/2

≤ |C|e−α2n/2.

The second inequality is the Chernoff bound (the events h(xi) 6= f(xi) are independent and each
occurs with probability more than α). By a union bound, we get that

Prx,h
[
Prr∼D[h(r) 6= f(r)] > α

]
≤ Prx,h[u(x, h) < −αn/2] + Prx[∃h ∈ BAD s.t. u(x, h) ≥ −αn/2]

< |C|e−εαn/4 + |C|e−α2n/2

so if n ≥ 8 ln|C|/(αmin{α, ε}) the mechanism is both accurate and private with high probability.

2 Online learning with experts

You are at the Happy Valley racetrack and want to bet in the next horse race but know nothing
about horses. You have access to K experts that predict possibly different winners. Knowing
nothing about the experts either, you choose one of them at random and go with their prediction.

Once the race is over and you collect your earnings (if any), it is time to bet on the next horse.
Now you have some additional information about the experts so perhaps you can do better than
choosing one at random. The ones that predicted well in the first race should be trusted more.
On the other hand, putting too much trust in any particular expert may not be such a good idea
because his correct prediction may just have been a stroke of good luck.

The multiplicative weights update algorithm strikes a balance between going with the winner and
choosing at random. At each time step t, the algorithm chooses an expert i ∈ {1, . . . ,K} and
obtains a reward of rt(i) ∈ [0, 1]. The rewards of the different experts may be interdependent and
may even depend on the choices that the algorithm made in previous time steps.

Algorithm MW :

4

Set y to be the uniform distribution over the set of experts {1, . . . ,K}.
For each time step t from 1 to T :

Sample expert it from the distribution y.
Observe the rewards rt(1), . . . , rt(K) and collect rt(it).
For each expert i,

Multiply y(i) by eαrt(i) and normalize y to
∑K

i=1 y(i) = 1.

The overall reward of this algorithm depends on the performance of the experts; in general, one
can never do better than the most successful expert. The MW algorithm performs almost as well
as this expert.

Theorem 2. For 0 < α ≤ 1.79 and every i ∈ [K],

E
[∑T

t=1
rt(it)

]
≥
∑T

t=1
rt(i)− αT − lnK/α.

In particular, if we set α =
√

lnK/T , the expected deviation in reward from that of the best expert
is at most 2

√
T lnK, or 2

√
lnK/T per time step.

Proof. We extend the proof of Theorem 3 in Lecture 3. Let x be any distribution over the set
of experts and yt be the state of distribution y before time step t. Using the same calculation as
before, we have

Div(x‖yt)−Div(x‖yt+1) = αEi∼x[rt(i)]− ln Ei∼yt [e
αrt(i)].

Since for α ≤ 1.79 and any [0, 1] bounded random variable X,

ln E[eαX] ≤ E[eαX]− 1 ≤ E[αX + α2] = αE[X] + α2

we get that
Div(x‖yt)−Div(x‖yt+1) ≥ αEi∼x[rt(i)]− αEi∼yt [rt(i)]− α2.

We now scale by 1/α, sum over t, and take linearity of expectation to get

1

α

(
Div(x‖y0)−Div(x‖yT)

)
≥ Ei∼x

[∑T

t=1
rt(it)

]
− E

[∑T

t=1
rt(it)

]
− αT.

Since y0 is uniform, Div(x‖y0) ≤ lnK and so

E
[∑T

t=1
rt(it)

]
≤ Ei∼x

[∑T

t=1
rt(it)

]
− αT − lnK

α
.

In particular, if we choose x to be the distribution that assigns probability 1 to expert i we obtain
the theorem.

Let us now view the reward matrix rt(i) as a private database whose t-th row consists of the vector
(rt(1), . . . , rt(K)) and the choice of experts (i1, . . . , iT) made by MW as public. If we track how
y(t) changes over time, we conclude that the outcome it at time step t is chosen with probability

1

Zt

t∏
t′=1

exp(αrt(i)) =
1

Zt
exp
(
α
∑t

t′=1
rt(i)

)

5

where Zt is a normalization constant that does not depend on i. This is an instantiation of
the exponential mechanism with utility U(u, i) =

∑t
t′=1 rt(i). Since U is 1-Lipschitz, it is 2α-

differentially private.

To analyze the privacy of MW we view it as a product mechanism that produces T independent
outputs, each of which is 2α-differentially private. We can therefore conclude that MW is 2αT -
differentially private. If we want to achieve, say, 1-differential privacy we should therefore set
α = 1/2T , which makes the bound in Theorem 2 useless.

We also know by Theorem 4 from Lecture 4 that MW is (12Tα2, e−Tα)-differentially private. If
we set ε = 12Tα2 we derive the following consequence:

Theorem 3. For ε ≤ 1, mechanism MW is (ε, e−Ω(
√
Tε))-differentially private with respect to the

database (r1, . . . , rT) and achieves expected reward at least

E
[∑T

t=1
rt(it)

]
≥ maxi∈[K]

∑T

t=1
rt(i)−O

(
lnK ·

√
T/
√
ε
)
.

References

These notes are based on Chapter 11 of the survey The Algorithmic Foundations of Differential
Privacy by Cynthia Dwork and Aaron Roth.

Theorem 2 is a special case of Theorem 2.4 from the survey The Multiplicative Weights Update
Method: A Meta-Algorithm and Applications by Sanjeev Arora, Elad Hazan, and Satyen Kale.

http://www.satyenkale.com/papers/mw-survey.pdf
http://www.satyenkale.com/papers/mw-survey.pdf

	Private and probably approximately correct
	Online learning with experts

