
CSCI 5520: Foundations of Data Privacy Lecture 11
The Chinese University of Hong Kong, Spring 2015 24 March 2015

In the model of differential privacy we studied so far we viewed the database as private and the
queries and answers as public information. In some scenarios assuming a trusted mechanism that
will not reveal any unintended information about database may not be reasonable. We will distin-
guish between two models of privacy violations:

• The mechanism can in general be trusted to preserve the privacy of the database participants,
but it may be forced to hand over its data to an untrusted party at some point in time. This
may for example be the consequence of an intrusion or a request from a higher authority.

• There is no trusted mechanism; the parties must implement the data release in a distributed
privacy-preserving manner.

We will look at a representative example for each of these models.

1 Local mechanisms

General cryptographic techniques for secure multiparty computation allow for the distributed im-
plementation of any efficient mechanism in a manner that preserves computational differential
privacy. In general, such techniques produce protocols that require interaction among the parties
and may be computationally intensive even for simple mechanisms, like the Laplace mechanism
for counting queries. It would be interesting to study if protocols with better efficiency, or ones
that achieve statistical differential privacy (without sacrificing accuracy), can be obtained even for
a single counting query.

Today we will consider the simpler setting of non-interactive mechanisms. We think of the rows
of the database as being distributed among n parties, one for each row. A local mechanism can
be described by n randomized algorithms M1, . . . ,Mn taking inputs in D and an aggregation
algorithm A. Given a database x ∈ Dn as an input, party i publishes a value Mi(xi) that may
depend on its input xi and its private randomness and the parties jointly compute the value
A(M1(x1), . . . ,Mn(xn)).

The usual differential privacy requirement is that the joint distribution of the outputs of M1, . . . ,Mn

do not differ by much on adjacent databases x, x′:

Pr[M1(x1) = y1 and · · · and Mn(xn) = yn] ≤ eε Pr[M1(x
′
1) = y1 and · · · and Mn(x′n) = yn].

for all y1, . . . , yn in the support of M1(x1), . . . ,Mn(xn) respectively. Since local mechanisms use
independent private randomness, this condition is equivalent to

Pr[M1(x1) = y1] · · ·Pr[Mn(xn) = yn] ≤ eε Pr[M1(x
′
1) = y1] · · ·Pr[Mn(x′n) = yn].

The probabilities cancel out except in the entry where x and x′ differ, so we can derive the following
equivalent definition.

1



2

Definition 1. A local mechanism is ε-differentially private if for every index i, every pair of inputs
xi, x

′
i ∈ D, and every possible output yi,

Pr[Mi(xi) = yi] ≤ eε Pr[Mi(x
′
i) = yi].

Here is a local mechanism for counting query qP called randomized response: Each party flips its
answer independently with some probability.

Mechanism RR(x):
Local algorithm Mi(xi) for row i:

Sample a random variable Ni ∼ {−1, 1}ε.
(Ni takes values −1 and 1 with probabilities (1− ε)/2 and (1 + ε)/2, respectively.)

Output Ni · (−1)P (xi).
Aggregation algorithm A: Output n/2− (1/2ε)

∑n
i=1Mi(xi).

Theorem 2. Mechanism RR is (2ε+O(ε2))-differentially private.

Proof Sketch. Since the outputs of Mi occur with probabilities (1− ε)/2 and (1 + ε)/2, we merely
need to verify that (1 + ε)/2 ≤ e2ε+O(ε2)(1− ε)/2.

We now analyze the accuracy. In expectation,

E
[∑n

i=1
Mi(xi)

]
=

n∑
i=1

E[Mi(xi)] =

n∑
i=1

E[Ni](−1)P (xi)

= ε

n∑
i=1

(−1)P (xi) = ε

n∑
i=1

(1− 2P (xi)) = ε(n− 2qP (x))

so E[RR(x)] = qP (x). By independence,

Var
[∑n

i=1
Mi(xi)

]
=

n∑
i=1

Var[Mi(xi)] =

n∑
i=1

Var[Ni] = (1− ε2)n

so the standard deviation of RR(x) is
√

(1− ε2)n/2ε. In contrast, the standard deviation of the
Laplace mechanism is 1/2ε for privacy parameter 2ε, so the accuracy of randomized response is
worse by a factor of about

√
n.

In Homework 3 you will show that the randomized response mechanism has optimal accuracy up
to constants: Any local, ε-differentially private mechanism for counting queries has additive error
Ω(
√
n/ε) with constant probability.

2 Continual observation

Suppose we want to maintain a statistic about events happening within a given time interval. For
example, individuals join and leave a party at different times. We want to know the head count at
any particular time. Releasing the exact count might violate the privacy of the participants.



3

To model this type of scenario we will represent time by discrete units from 1 to n. A database
x ∈ Dn can then be viewed as a sequence of events over time. For example xi can be the number
of people that joined minus the number of people that left the party at time i. Our objective is
then to release the vector of cumulative statistics

q(x) = (q1(x), . . . , qn(x)) where qt(x) = x1 + · · ·+ xt.

Moreover, the value qt(x) should be released online at time t before observing the values of the
inputs xt+1 up to xn.

For simplicity, let us assume that D = {0, 1}: we will only count arrivals and there can be at
most one in any given time step. The query q has high sensitivity; the value of x1 affects all the
components of q(x), so the product Laplace mechanism cannot give simultaneously good privacy
and accuracy.

We now describe a differentially private algorithm for this task. We’ll assume n is a power of two.
Let T be the full binary tree with n nodes. We label the nodes of T by intervals of the form
[s, t] = {s, s+ 1, . . . , t} as follows: The i-th leaf is labeled by the singleton set {i} = [i, i] and each
internal node is labeled by the union of its leaves. For example, if n = 4, then the root of T is
labeled by the interval [1, 4], its left and right children are labeled by [1, 2] and [3, 4], respectively,
and the leaves are labeled by {1}, {2}, {3}, and {4}, respectively.

Each interval of the form [1, t] can then be written as the disjoint union of intervals indexed by at
most log n nodes in the tree like this: Follow the leftmost path until you reach the first interval
contained in [1, t], take this interval, then recurse on the subtree rooted by its sibling.

Consider the following mechanism for the query vector q:

Mechanism Cum(x):
For each node I of T :

Sample an independent Lap(log n/ε) random variable NI .
Let XI =

∑
i∈I xi +NI .

In time step t, answer query qt as follows:
Write [1, t] as the disjoint union of at most log n intervals I1, . . . , It.

Output
∑k

v=1XIv .

The answer for qt does not require knowledge of xt+1, . . . , xn, so this mechanism can be implemented
in an online manner.

Theorem 3. Mechanism Cum is ε-differentially private.

Proof. Since the output of Cum(x) is computed deterministically from the values XI , it is sufficient
to show that this sequence of values (XI)I∈T is ε-differentially private. This sequence can be
viewed as the output of the product Laplace mechanism with parameter log n/ε on the function
f(x) = (

∑
i∈I xi)I∈T . The input xi appears in exactly log n+1 outputs of f , once for each ancestor

node of {i} (including {i} itself but not the root). Therefore f is log n-Lipschitz. By Theorem 2
from Lecture 2, the sequence (XI)I∈T is ε-differentially private.



4

To analyze the accuracy of Cum we need the following large deviation bound for sums of indepen-
dent discrete Laplace random variables.

Theorem 4 (Chernoff bound for Laplace random variables). If Y1, . . . , Ym are independent Lap(b)
random variables, then

Pr[Y1 + · · ·+ Ym > d · b
√
m] < e−d

2/8

for all d such that 0 < d < b
√
m.

By this inequality, for every query qt,

Pr
[∑k

v=1
XIv − qt(x) > d(log n)3/2/ε

]
≤ Pr

[∑k

v=1
NIv > d(log n)3/2/ε

]
≤ e−d2/8

and by symmetry and a union bound

Pr

[∣∣∣∑k

v=1
XIv − qt(x)

∣∣∣ > d(log n)3/2/ε

]
< 2e−d

2/8.

Taking a union bound over all t from 1 to n we obtain that the mechanism has additive error
d(log n)3/2/ε on all queries with probability at least 1 − 2ne−d

2/8. For d = O(
√

log n), we obtain
the following bound on the accuracy of Cum.

Theorem 5. With probability at least 1− 1/n, for all queries t, the answer of Cum(x) to qt(x) is
within error at most O((log n)2/ε) of x1 + · · ·+ xt.

A lower bound In fact any 1-differentially private mechanism must have additive error at least
a = Ω(log n) on at least one of the queries with probability at least 1/2 for the following reason.
Suppose M is a 1-differentially private mechanism that achieves additive error less than a on all
queries qt. Partition x ∈ {0, 1}n into n/(2a) blocks of length 2a each. Let xi be the database whose
rows in the i-th block all equal 1 and all the other rows are zero. Then

qj(x
i) =

{
0, for j = 0, 2a, 4a, . . . , 2(i− 1)a

2a, for j = 2ia, 2(i+ 1)a, . . . , n.

Let Ti be the event ak < a for j = 0, 2a, 4a, . . . , 2(i − 1)a and ak > a for j = 2ia, 2(i + 1)a, . . . , n,
where aj is mechanism’s answer to the j-th query. By accuracy of the mechanism, Pr[M(xi) ∈
Ti] ≥ 1/2. Since xi and x1 differ in 4a entries, by differential privacy,

Pr[M(x1) ∈ Ti] ≥ e−4a Pr[M(xi) ∈ Ti] ≥
e−4a

2
.

The events T1, . . . , Tn/2a are disjoint so

n/2a∑
i=1

Pr[M(x1) ∈ Ti] ≤ 1

which is impossible if a < lnn/4 − 1. It should be possible to extend this bound to (1, 0.1/n)-
differentially private mechanisms.



5

3 Pan-private implementations

An implementation of continual data release mechanism is pan-private if the mechanism remains
private even when its state is released to an adversary at some point in time. To define this concept
properly, we model the mechanism implementation as an online algorithm which at time i, receives
as its input its i-th row xi ∈ D, updates its state, produces its i-th output, and updates its state
again.

Definition 6. An mechanism implementation M : Dn → Rn is ε-differentially pan-private for the
past if for every time t ∈ [n], the joint distribution of the first t outputs of M and the state of the
memory of M after time t is ε-differentially private.

A more general definition that also takes into account the state of the memory after time t is also
possible, but we’ll stick to this one for relative simplicity. This definition may be sensible in a
scenario where after an intrusion is discovered, the mechanism halts and does not take in any new
inputs.

Pan-private cumulative sums We now describe a pan-private mechanism implementation for
cumulative sums. This mechanism also maintains noise for each node in a complete binary tree
with n leaves, but the noise is used in a somewhat different way.

Mechanism PPCum:
Set X = N , where N is a Lap(1/η) random variable where 1/η = (log n+ 1)/ε.
For each node I of T except the root,

Sample an independent Lap(1/η) random variable NI .
On input xt in time step t:

Add xt to X.
Output X +

∑
I : t∈I NI .

Erase xt and all values NI where I ⊆ [1, t].

The accuracy analysis is similar as for the previous algorithm. Before we prove privacy, let’s see an
example. When n = 4, the following values are released by the mechanism

N + x1 +N{1} +N[1,2] at time step 1

N + x1 + x2 +N{2} +N[1,2] at time step 2

N + x1 + x2 + x3 +N{3} +N[3,4] at time step 3.

The memory of the mechanism after time step 3 contains the values

N + x1 + x2 + x3, N[3,4], N{4}.

Let x′ be the data sequence obtained from x by modifying the value of x3. Moreover, suppose that
x3 = 0 and x′3 = 1. Then the sequence of values that are released before time step 3 and in memory
after time step 3 is identical to



6

N ′ + x1 +N{1} +N ′[1,2] at time step 1

N ′ + x1 + x2 +N{2} +N ′[1,2] at time step 2

N ′ + x1 + x2 + x′3 +N{3} +N[3,4] at time step 3

N ′ + x1 + x2 + x′3, N[3,4], N{4} in memory after time 3

where N ′ = N − 1 and N ′[1,2] = N[1,2] + 1. We can conclude that for any such pair x, x′, the

probability of any view after 3 steps on input x is at most e2/η times smaller than the probability
of the same view on input x′.

We can now sketch the general proof of pan-privacy.

Theorem 7. Mechanism PPCum is ε-differentially pan-private from the past.

Proof Sketch. Let x, x′ be two adjacent data sequences that differ in entry j ≤ t. Without loss of
generality, we can assume that xj = 0 and x′j = 1. The values of the queries released by PPCum(x)
up to time t are

N + x1 + · · ·+ xi +
∑
I : i∈I

Ni at time i

for 1 ≤ i ≤ t. The memory contents of PPCum(x) after time t consist of the value N+x1+ · · ·+xt
and those NI such that I does not intersect the interval [1, t].

We represent the [1, j − 1] as a disjoint union of at most log n intervals I1, . . . , Ik as in Section 2.
Set

N ′ = N − 1, N ′I1 = NI1 + 1, . . . , N ′Ik = NIk + 1.

and N ′I = NI for all the other intervals I.

The joint view of the first t answers and the memory after time t in PPCum(x) with randomness
N,NI is then identical to the corresponding joint view of PPCum(x′) with randomness N ′, N ′I .
The ratio of the probabilities of these two views is at most

eη · ekη = e(k+1)η ≤ eε

by our choice of parameters, so PPCum is ε-differentially pan-private from the past.

References

These notes are based on Chapter 12 of the survey The Algorithmic Foundations of Differential
Privacy by Cynthia Dwork and Aaron Roth.


	Local mechanisms
	Continual observation
	Pan-private implementations

