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One objective that differential privacy achieves is that no individual stands out in data that is
released by a private mechanism. In our discussion so far we did not make any assumption on
what the data looks like and this objective was achieved purely by mechanism design. The notion
of crowd-blending privacy, which we discuss next, allows for more accurate answers in cases when
parts of the data itself are anonymous.

1 Crowd-blending privacy

The objective of crowd-blending privacy is to model scenarios where an individual’s data attribute
of interest looks identical to that of many others’ in the database. For example, suppose the
database contains people and their favourite colors: 40 people like blue, 46 like red, 7 like yellow,
and only 2 like yellow. If I like blue, I blend in among 39 other people, so I should not suffer a
particular harm if the number of blue-lovers is released. On the other hand, if I am among the
rare yellow-lovers, the release of the yellow count may allow an observer to infer a fairly accurate
conclusion about my participation in the database.

Crowd-blending privacy distinguishes between the case when there are many other people in the
database that share my type and the case when there aren’t. In the second case, my privacy should
be protected in the usual way: Replacing my data with any other data should yield outcomes of
similar probabilities. In the first case, the definition merely requires that the mechanism does not
distinguish between myself and any other individual that shares my type.

We will not formalise the notion of “my type” explicitly but give an operational, indistiguishability-
based definition: Two individuals are of the same type with respect to the mechanism if replacing
one with the other does not affect the output by much, regardless of who else is in the database.

Definition 1. Mechanism M : Dn → R ε-blends entries r, r′ ∈ D if for every i, every x−i ∈ D[n]−{i}

and every y,
Pr[M(x−i, r) = y] ≤ eε Pr[M(x−i, r

′) = y].

Here, (x−i, xi = r) is the database that contains r as its i-th row and x−i in its other rows. This
definition makes sense even for ε = 0; we then say M blends xi and x′i.

The definition of crowd-blending privacy requires that an individual either blends with many other
entries in the database, or if it doesn’t, then it is not sensitive to the presence of that individual.
For this definition, we will not fix the number of rows in the database ahead of time.

Definition 2. Mechanism M : D∗ → R is (k, ε)-crowd blending if for every n, every x ∈ Dn, and
every i,

• There exist at least k rows j ∈ [n] such that M ε-blends xi with xj , or
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• For all y, e−ε Pr[M(x−i) = y] ≤ Pr[M(x) = y] ≤ eε Pr[M(x−i) = y].

The two possibilities are not exclusive; if we disallow the first one, we recover the usual notion of
ε-differential privacy.1

One natural example of a (k, ε)-crowd blending mechanism that is not ε-differentially private is the
following mechanisms for histograms. Recall that a histogram query qh for a function h : D → B
on input x ∈ Dn is the vector of counts kb = |{i : h(xi) = b}| as b ranges over the set of buckets B.

Mechanism Histh(x), where x ∈ Dn and h : D → B:
For all b ∈ B:

Let kb = |{i : h(xi) = b}|.
If kb ≥ k, output kb.
Otherwise output ⊥.

This mechanism is clearly not differentially private as it is deterministic.

Theorem 3. Mechanism Histh is (k, 0)-crowd blending.

Proof. Fix x and i. Let H be the set of all j ∈ [n] such that h(xi) = h(xj). We consider two cases.

If |H| ≥ k, since the mechanism M blends xi with xj for every j ∈ H (regardless of what the other
rows are), the first condition in the definition is satisfied.

If |H| < k, then removing the i-th entry only decreases the number of entries in bucket b so both
Histh(x) and Histh(x′) output ⊥ for bucket b; all the other outputs stay the same.

2 Differential privacy from crowd-blending privacy

While crowd-blending private mechanisms are not in general differentially private, the weaker pri-
vacy notion can sometimes be used to achieve the stronger one. One such case is when the data
consists of random independent samples from a large population. For example, the above histogram
mechanism applied to a random sample from a sufficiently large population produces differentially
private output.

Suppose M is a (k, ε)-crowd blending mechanism and consider the following mechanism M ′.

Mechanism M ′: On input x ∈ Dn,
Choose S ⊆ [n] by including each entry i ∈ [n] independently with probability ε.
Ouput M(x|S), where x|S ∈ DS is the collection of rows indexed by entries in S.

Theorem 4. If mechanism M is (k, ε)-crowd blending private then mechanism M ′ is (O(ε), e−Ω(k))-
differentially private.

1To be precise, this definition talks about removing a row instead of modifying it, resulting in a factor of two loss
in the privacy parameter.
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To prove Theorem 4, we will show that for every x, i, and event T

Pr[M ′(x) ∈ T ] ≤ eO(ε) · Pr[M ′(x−i) ∈ T ] + e−Ω(k)

and
Pr[M ′(x−i) ∈ T ] ≤ eO(ε) · Pr[M ′(x) ∈ T ] + e−Ω(k)

where x−i is the database x with row i removed. The usual requirement follows easily by combining
these two inequalities. They can be summarized in the single condition∣∣Pr[M ′(x) ∈ T ]− Pr[M ′(x−i) ∈ T ]

∣∣ ≤ O(ε) ·min{Pr[M ′(x) ∈ T ],Pr[M ′(x−i) ∈ T ]}+ e−Ω(k). (1)

Fix x and i and let B be the set of rows j 6= i such that M ε-blends xi with xj . When B is large, we
will argue that xi is very likely to either be absent from xS or blend in it and conclude differential
privacy by the blending condition. If not, then xi is very unlikely to blend with k entries of xS by
the other condition in the definition of crowd-blending privacy.

Lemma 5. For ε ≤ 1 and every x, i, and T ,∣∣Pr[M ′(x) ∈ T ]− Pr[M ′(x−i) ∈ T ]
∣∣ ≤ O(ε) ·min{Pr[M ′(x) ∈ T ],Pr[M ′(x−i) ∈ T ]}+ e−Ω(ε|B|).

Lemma 6. If ε|B| ≤ k/2 then for every x, i, and T ,∣∣Pr[M ′(x) ∈ T ]− Pr[M ′(x−i) ∈ T ]
∣∣ ≤ O(ε) ·min{Pr[M ′(x) ∈ T ],Pr[M ′(x−i) ∈ T ]}+ e−Ω(k).

By combining these two lemmas we derive inequality (1) and prove Theorem 4.

Proof sketch of Lemma 5. Using conditional probabilities, we can write

Pr[M(xS) ∈ T ] = (1− ε) Pr[M(x|S) ∈ T | i 6∈ S] + εPr[M(x|S) ∈ T | i ∈ S]

= (1− ε) Pr[M(x−i|S) ∈ T ] + εPr[M(x|S) ∈ T | i ∈ S]

from where∣∣Pr[M(xS) ∈ T ]− Pr[M(x−i|S) ∈ T ]
∣∣ = ε

∣∣Pr[M(x|S) ∈ T | i ∈ S]− Pr[M(x−i|S) ∈ T ]
∣∣.

Let E be the event ε|B|/2 ≤ |B − S| ≤ 2ε|B|. By a multiplicative Chernoff bound (a different
variant from the one in Lecture 2), Pr[E] < 2−Ω(ε|B|). Therefore,∣∣Pr[M(xS) ∈ T ]− Pr[M(x−i|S) ∈ T ]

∣∣
≤ ε
∣∣Pr[M(x|S) ∈ T | i ∈ S,E]− Pr[M(x−i|S) ∈ T | E]

∣∣+ 2−Ω(ε|B|).

To finish the proof, we will show that

Pr[M(x|S) ∈ T | i ∈ S,E] = Θ(Pr[M(x−i|S) ∈ T | E]) and

Pr[M(x|S) ∈ T | i ∈ S,E] = Θ(Pr[M(x|S) ∈ T | E]).
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Let S′ = S − {i} ∪ {i′}, where i′ is a random element of B − S. By the crowd-blending privacy of
M ,

e−ε Pr[M(x|S′) ∈ T | i ∈ S,E] ≤ Pr[M(x|S) ∈ T | i ∈ S,E] ≤ eε Pr[M(x|S′) ∈ T | i ∈ S,E]

so it is sufficient to show that the conditional probabilities of the events M(x|S′) ∈ T | i ∈ S,E and
M(x−i|S) ∈ T | E are of the same order of magnitude. To do this, we compare the probabilities of
the outcomes S = A and S′ = A under the two conditional distributions for any set A ⊆ [n]− {i}
such that ε|B|/2 ≤ |A ∩B| ≤ 2ε|B|.

Let’s write AB and A−B for the sets A ∩B and A−B. Then

Pr[S = A]

Pr[S′ = A]
=

Pr[SB = AB] Pr[S−B = A−B]

Pr[S′B = AB] Pr[S′−B = A−B]
=

Pr[SB = AB]

Pr[S′B = AB]

because outside B, S and S′ are identically distributed. Now

Pr[S′B = AB] =
∑

a∈A∩B
Pr[S′B = AB | i′ = a] Pr[i′ = a]

=
∑

a∈A∩B
Pr[SB = (A− {a})B | i′ = a] · 1

|B|

=
∑

a∈A∩B
Pr[SB = (A− {a})B] · 1

|B|

=
∑

a∈A∩B

1− ε
ε
· Pr[SB = AB] · 1

|B|
.

By the conditioning on E, ε|B|/2 ≤ |A ∩ B| ≤ 2ε|B| and so the two probabilities are within a
constant factor of one another.

By a similar argument, we should be able to show that Pr[M(x|S) ∈ T | i ∈ S,E] and Pr[M(x|S) ∈
T | E] also have the same order of magnitude. We define S′ as before, but now i′ is chosen at
random from B − S ∪ {i}. The calculation should be similar.

Proof of Lemma 6. Let E be the event |S ∩ B| < k − 1. By a multiplicative Chernoff bound,
Pr[E] = e−Ω(k). If E holds then M ε-blends xi with fewer than k elements of S ∩B, so it must be
that

e−ε Pr[M(x−i|S) ∈ T and E] ≤ Pr[M(x|S) ∈ T and E] ≤ eε Pr[M(x−i|S) ∈ T and E].

We then have∣∣Pr[M ′(x) ∈ T ]− Pr[M ′(x−i) ∈ T ]
∣∣ ≤ ∣∣Pr[M ′(x) ∈ T and E]− Pr[M ′(x−i) ∈ T and E]

∣∣+ Pr[E]

≤ (eε − 1) Pr[M ′(x−i) ∈ T and E] + Pr[E]

≤ (eε − 1) Pr[M ′(x−i) ∈ T ] + Pr[E].

The other inequality is proved in an analogous way.
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3 Outlier privacy

Crowd-blending privacy formalizes the requirement that individuals who blend in the crowd do
not require differential privacy. Another possibility is to tailor the privacy requirement to the
individual: Those database rows that do not blend well — the outliers — may require more privacy
than those that do.

Definition 7. Let ε be a function of k. A mechanism M is (ε(k), δ)-outlier private if for every x,
i, and T

Pr[M(x) ∈ T ] ≤ eε(k) Pr[M(x−i) ∈ T ] + δ and Pr[M(x−i) ∈ T ] ≤ eε(k) Pr[M(x) ∈ T ] + δ.

where k is the number of rows j such that M blends xi and xj .

If ε(k) is upper bounded by ε for all k then this type of mechanism is in particular ε-differentially
private.

We now give an outlier private version of the histogram mechanism. The idea is to add more noise
to bins that contain fewer items. Let ε > 0 and t,K be integer parameters and set

ε(k) =

{
tε/(K − k), if k < K − t,
ε, if k ≥ K − t.

Here is a graph for t = 1/ε with ε = 0.2 and K = 15.
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We will consider the following mechanism.

Mechanism Outh(x), where x ∈ Dn and h : D → B:
For all b ∈ B:

Let kb = |{i : h(xi) = b}|.
Output kb +Nb, where Nb ∼ Lap(1/ε(kb)).

Theorem 8. Mechanism Outh is (O(ε(k)), O(|B|e−εt))-outlier private.

Proof Sketch. Let E be the event that Nb ≤ (K − kb) for all b ∈ B. By the large deviation bound
for exponential random variables and the union bound, Pr[E] = O(|B|e−εt).
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Now assume E holds and let (yb)b∈B be an output of Outh(x). Removing the i-th row of x decreases
yb by one for b = h(xi) and does not affect the other outputs. Therefore

Pr[Out(x) = y]

Pr[Out(x−i) = y]
=

PrNb∼Lap(1/ε(kb))[Nb = yb − kb]
PrNb∼Lap(1/ε(kb−1))[Nb = yb − (kb − 1)]

=
e−ε(kb)·(yb−kb)/Zkb

e−ε(kb−1)·(yb−kb+1)/Zkb−1
.

We will assume that kb ≤ K−t as the other case is straightforward. The ratio Zkb−1/Zkb is bounded
by e±O(ε(kb−1)). Taking logarithms and absolute values we write∣∣∣∣ln Pr[Out(x) = y]

Pr[Out(x−i) = y]

∣∣∣∣ ≤ |ε(kb − 1)− ε(kb)| · |yb − kb|+ ε(kb − 1) +O(ε(kb − 1))

≤ |ε(kb − 1)− ε(kb)| · (K − kb) +O(ε(kb − 1))

= tε ·
( 1

K − kb
− 1

K − kb + 1

)
· (K − kb) +O(ε(kb − 1))

= tε · 1

(K − kb)(K − kb + 1)
· (K − kb) +O(ε(kb − 1))

= O(ε(kb − 1))

= O(ε(kb)).

Regarding the utility of this mechanism, the standard deviation of the noise for a bin of size k is
(K − k)/tε. For t = 1/ε, a bin of size k will have noise on the order of K − k. In a typical run of
the mechanism, the estimates for bins of size up to about K will be on the order of K; the amount
of noise will then drop to 1/ε for the larger bins. In terms of information, the effect is comparable
to that of suppressing the counts of the small bins.
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