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1 Probability spaces

Here are some basic probability notions we will be using throughout the course. We will only deal
with finite probability spaces which makes the setup easier. A probability space (Ω, p) consists of a
finite set Ω of sample points together with a probability distribution, which assigns to every ω ∈ Ω
a probability pω. The probabilities are non-negative and their sum is one, i.e.

∑
ω∈Ω pω = 1. The

uniform distribution assigns the same probability 1/|Ω| to all the sample points.

Suppose you have a coin that comes up heads (H) 1/3 of the time and tails (T) 2/3 of the time.
This can be modeled as a probability space with sample space {H, T} and probability distribution
pH = 1/3, pT = 2/3. If you toss the coin twice, you expect the pattern HH to occur 1/9 of the time,
HT and TH to occur 2/9 of the time each, and TT to occur the remaining 4/9 of the time. This
can be modeled as a probability space with sample space HH, HT, TH, TT and probability distribution
pHH = 1/9, pHT = 2/9, pTH = 2/9, pTT = 4/9.

This shows a general way of obtaining a large probability space from smaller ones: Given two
probability spaces (Ω, p) and (Ω′, p′), their product space is (Ω × Ω′, p · p′), where p · p′ assigns
probability pω · p′ω′ to the sample point (ω, ω′). We can extend this operation to any number of
probability spaces. The n-th power of a probability space is obtained by taking the product with
itself n times.

Notice that a product of probability spaces under uniform distributions has a uniform distribution.

2 Events and random variables

An event is a subset of the sample space. The probability of event E is the sum of the probabilities
of all the sample points inside E:

PrΩ,p[E] =
∑
ω∈E

pω.

Usually we just write Pr[E] for PrΩ,p[E].

For example consider the probability space {H, T}9 under the uniform distribution modelling se-
quences of 9 tosses of a random coin. Then the event H1 consisting of those sample points whose
first entry is H has probability Pr[H1] = 1/2. This can be calculated from the above formula since
there are 28 different sample points that start with H each with probability 2−9. But there is an
easier way: Since our probability space is a product of nine spaces and the event only depends on
the first component (i.e., whether ω ∈ H1 or not is completely determined by the first coordinate
of ω), then we can think of H1 as an event over {H, T} under the uniform distribution, and clearly
Pr[H1] = pH = 1/2.
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Now consider the event M consisting of those sample points that have more Hs than Ts. What is
Pr[M ]? Now M depends on all nine components, so we have to resort to a different calculation.
Let M be the event of those sample points that have more Ts than Hs. To each sample point in M
we can uniquely associate a sample point in M by turning each H into a T and vice versa: Thus
HHHTTTHHH becomes TTTHHHTTT. This is a one-to-one, probability preserving map from M to M , so
Pr[M ] = Pr[M ]. Since M and M partition the sample space (they are disjoint and cover the whole
space), we have Pr[M ] + Pr[M ] = Pr[Ω] = 1, so it must be that Pr[M ] = Pr[M ] = 1/2.

A random variable over a probability space is a function from Ω to some set of values. We can view
events as random variables that take values true (if ω is in the event) and false (if not). If X is a
real-valued random variable, its expectation is given by

E[X] =
∑
ω∈Ω

pωX(ω).

Let N be the random variable over {H, T}9 that counts the number of Hs in the sample. For example,
N(HHHTTTHHH) = 6. How can we calculate E[N ]? Doing a direct calculation is difficult. One easier
way to do it is to notice that if two sample points ω and ω′ are associated by the above map, then
N(ω) +N(ω′) = 9, so by pairing up the points we get E[N ] = 9/2.

But there is an even easier way. One useful property of any pair of random variables is linearity of
expectation:

E[X + Y ] = E[X] + E[Y ].

This formula is especially useful when we can break up a random variable into a sum of simpler
ones. For each position 1 ≤ i ≤ 9, we can define a random variable Ni that takes value 1 if the ith
coordinate of the sample point is H and 0 if not. Then

N = N1 +N2 + · · ·+N9

and therefore
E[N ] = E[N1] + E[N2] + · · ·+ E[N9]

But now random variable N1 only depends on the first component of the sample space, we have

E[N1] =
1

2
· 0 +

1

2
· 1 = 1/2

and similarly for E[N2] = 1/2, . . . ,E[N9] = 1/2. Putting these together we get E[N ] = 9 · (1/2) =
9/2.

Notice one thing we did in this calculation: We took an event “the ith coordinate is H” and
associated a random variable Ni that takes value 1 if the event is true, and 0 if not. This is a useful
trick; such random variables are called indicator random variables of the corresponding event.

3 Independence

Two events E and E′ are independent if Pr[E ∩ E′] = Pr[E] · Pr[E′]. Independent events arise
naturally from product spaces: If E is an event over (Ω, p) and E′ is an event over (Ω′, p′), they
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both naturally extend to events over the product space (Ω × Ω′, p · p′), and you can check they
satisfy the independence requirement.

Consider {H, T}9 under the uniform distribution and the following events:

• Hi of those ω such that the ith entry of ω is H

• E such that ω contains an even number of H

• M such that ω contains more Hs than Ts.

Then H1 and H2 are independent since they can be viewed as events over distinct components of a
product probability space. H1 and E are also independent, although they both depend on the first
entry of ω. Seeing this requires a little bit of work. H1 and M are not independent, and neither
are E and M , but I don’t know an easy way to see this.

Events E1, . . . , Ek are independent if for every subset S ⊆ {1, . . . , k},

Pr
[⋂
i∈S

Ei

]
=
∏
i∈S

Pr[Ei].

They are pairwise independent if Pr[Ei ∩ Ej ] = Pr[Ei] Pr[Ej ] for every i 6= j. Events H1, . . . ,H9

above are independent, and so are H1, . . . ,H8, E, but H1, . . . ,H9, E are not independent: Pr[H1 ∩
· · · ∩H9 ∩ E] = 0 while Pr[H1] · · ·Pr[H9] Pr[E] = 2−10. However H1, . . . ,H9, E are pairwise inde-
pendent.

Random variablesX1, . . . , Xk are independent if for every collection of real-valued functions f1, . . . , fk:

E[f1(X1) · · · fk(Xk)] = E[f1(X1)] · · ·E[fk(Xk)].

You should check that a collection of events is independent if and only if their indicator random
variables are independent.

4 More on random variables and conditioning

We defined a random variable X as a function from a sample space Ω (with probability distribution
p) to some set of values Ξ. The random variable X induces a probability space over Ξ as follows:
The probability qξ of ξ ∈ Ξ is given by qξ = PrΩ,p[X = χ]. For example, let N be a random
variable denoting the number of Hs with respect to the probability space {H, T}9 under the uniform
distribution. Then N induces a probability distribution over the space {0, 1, . . . , 9} that assigns
probability 2−9 to 0, 9 · 2−9 to 1, and in general

(
9
k

)
2−9 to k.

From this perspective random variables themselves can be viewed as a “basic object”, while prob-
ability spaces and events inside them as “derived quantities”. Let’s go back to the the example of
{H, T}9 under the uniform distribution and see how this perspective plays out.

Let Hi be a random variable that indicates the ith position of a sample point ω, i.e. Hi = H if the
ith entry is an H and T otherwise. Then the variables H1, . . . ,H9 are independent and their values
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determine the value of any other random variable over this space. So a random variable is now a
function of H1, . . . ,H9. Since events are also random variables that take true-false values, they can
be viewed as boolean-valued functions with inputs H1, . . . ,H9. When we want to emphasize this
dependency we write

PrH1,...,H9 [E] = PrH1,...,H9 [E(H1, . . . ,H9)]

and similarly for a real-valued random variable X

EH1,...,H9 [X] = EH1,...,H9 [X(H1, . . . ,H9)].

Now think of the following scenario. Suppose we have already tossed the first two coins, but we do
not know what their outcomes are. We want to know what is the expected number N of Hs with
respect to the remaining seven coin tosses. This expectation is not a single number, but a function
of H1 and H2. In this specific case, we can say that

EH3,...,H9 [N ](H1, H2) =


11/2, if H1H2 = HH

9/2, if H1H2 = HT or TH

7/2, if H1H2 = TT.

But sinceH1 andH2 are random variables, EH3,...,H9 [N ] itself becomes a real-valued random variable
on the probability space {H, T}2 (determined by H1 and H2) under the uniform distribution. It
induces the following probability distribution:

EH3,...,H9 [N ] =


11/2, with probability 1/4

9/2, with probability 1/2

7/2, with probability 1/4.

Taking the expectation of EH3,...,H9 [N ] in this space we get

EH1,H2

[
EH3,...,H9 [N ]

]
=

11

2
· 1

4
+

9

2
· 1

2
+

7

2
· 1

4
=

9

2

so EH1,H2 [EH3,...,H9 [N ]] = EH1...,H9 [N ].

In general, if we have a pair of independent random variables X,Y and a function f from the range
of (X,Y ) to the real numbers we can write

EX,Y [f(X,Y )] = EX [EY [f(X,Y )]].

As a special case, when f is the indicator of an event F , we get

PrX,Y [F (X,Y )] = EX [PrY [F (X,Y )]].

Conditioning What happens when X and Y are not independent? The notation becomes more
complicated but we can do something similar. For any pair of random variables X,Y , we let Y | X
be the following function. The inputs of Y | X are those x in the range of X that occur with
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nonzero probability. The outputs of Y | X are random variables that take values in the range of Y
and are described by the following probabilities

(Y | X)(x) takes value y with probability
PrX,Y [X = x and Y = y]

PrX [X = x]
.

We usually write Y | X = x for (Y | X)(x). Then for any function f we can write

EX,Y [f(X,Y )] = EX
[
EY |X [f(X,Y ) | X]

]
.

When the explicit dependences of f on X and Y are not relevant we can represent f(X,Y ) by
a random variable R and write E[R] = EX [E[R | X]], where it is understood that the inner
expectation is conditional. Similarly by identifying events with their indicator functions

Pr[F ] = EX
[
Pr[F | X]

]
.

5 Concentration inequalities

Concentration inequalities tell us how likely a real-valued random variable is to deviate from its
expectation. The simplest and most universal one is Markov’s inequality, which tells us that a
nonnegative random variable is unlikely to exceed its mean value by too much:

Theorem 1 (Markov’s inequality). Let X be a random variable taking nonnegative real values.
Then for every t ≥ 1

PrX
[
X ≥ tE[X]

]
≤ 1/t.

This has a simple explanation: If a random variable takes large values with large enough probability,
then its average must also be large.

Proof. Fix x and let I be the event X ≥ x. We write

E[X] = EI [E[X | I]] = E[X | I = true] Pr[I = true] + E[X | I = false] Pr[I = false].

Now EX [X | I = false] ≥ 0 and EX [X | I = true] ≥ x, so we get

Pr[I = true] ≤ E[X]

x
.

Setting x = tE[X] proves the theorem.

Here is one useful consequence of Markov’s inequality:

Lemma 2. Let F be an event and X be a random variable. If Pr[F ] ≥ p+ q − pq, then

PrX [Pr[F | X] > p] ≥ q.
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Proof. We will work with F , the complement of the event F . By assumption Pr[F ] ≤ 1−p−q+pq =
(1− p)(1− q). Then EX [Pr[F | X]] ≤ (1− p)(1− q). By Markov’s inequality,

PrX [Pr[F | X] ≥ t(1− p)(1− q)] ≤ 1/t.

Setting t = 1/(1− q) we get
PrX [Pr[F | X] ≥ 1− p] ≤ 1− q.

Taking the complement of the inner event we get

PrX [Pr[F | X] < 1− p] ≥ q

and finally, since Pr[F | X] = 1− Pr[F | X] we get

PrX [Pr[F | X] > p] ≥ q.

When we apply this inequality the −pq term is often unimportant. For example suppose you know
20% of Hong Kong students do not get enough exercise. Let X be a random school. Setting
p = q = 10% this claim tells you that in at least 10% of the schools, more than 10% of the students
there do not get enough exercise.

More to come...

6 Comparing probability distributions

In cryptography we often want to compare two random variables X and Y taking values in some
sample space Ξ. We are usually given some “sample” ξ ∈ Ξ and we want to know if it “came from”
X or from Y . We can rarely say this with certainty but we can make predictions based on the
probability distributions induced by X and Y .

We say that X and Y are identically distributed (or perfectly indistinguishable) if for every event T
over Ξ, Pr[T (X)] = Pr[T (Y )]. Intuitively, when two random variables are identically distributed,
no experiment T can tell if we are looking at one or the other. You should convince yourself that
X and Y are identically distributed if and only if they take every value with the same probability.
For example, H1 and H2 in Section 4 are identically distributed.

Sometimes we have to deal with cases when X and Y are not identically distributed, but they
are “very close” to one another. Let’s consider random variables taking values in the set {0, 1}n.
Suppose X is uniformly distributed and Y is uniformly distributed conditioned on never taking the
value 0n. That is, Y takes every value except 0n with probability 1/(2n − 1). Then X and Y are
not identically distributed, because the event Z(ξ) which is true when ξ = 0n and false when not
distinguishes the two: Pr[Z(X)] = 2−n while Pr[Z(Y )] = 0.

However when n is large the difference between these two probabilities becomes tiny. And there is
nothing special about Z here because it turns out that for any event T , |Pr[T (X)]−Pr[T (Y )]| ≤ 2−n.
Intuitively, this says no matter which experiment we do, the chances that it tells X apart from Y
is at most 2−n. This motivates the following definition.
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Definition 3. Two random variables X and Y taking values in Ξ are ε-statistically indistinguishable
if for every event T over Ξ, |Pr[T (X)]− Pr[T (Y )]| ≤ ε.

By playing with the above example you should be able to convince yourself that the quantity
|Pr[T (X)]− Pr[T (Y )]| is maximized by the event

T = {ξ : Pr[X = ξ] > Pr[Y = ξ]}

and this is true in general.


