- 1. Find and explain the mistakes in the following "proofs".
 - (a) **Theorem:** In every group of 5 people there is a person who is friends with at least 3 of them.

Proof. Let A and B denote two of the five people. The proof is by case analysis. We consider two cases:

- Case 1: A is friends with at least 3 other people in the group.
- Case 2: B is friends with at least 3 other people in the group.

It follows that at least one of A and B is friends with at least 3 other people, so a person that is friends with at least 3 others always exists. \Box

(b) Theorem: Every group of 8 people includes a group of 4 friends or a group of 4 strangers.

Proof. Let A be one of the eight people. The proof is by case analysis. We consider two cases:

- Case 1: A is friends with at least 4 other people in the group.
- Case 2: A is a stranger to at least 4 other people in the group.

One of these two cases must hold. Let's discuss Case 1. If all the people who are friends with A are strangers among themselves, this is a group of 4 strangers. Otherwise, at least 3 of them are mutual friends, and together with A they form a group of 4 friends.

Now let's do Case 2. If all the people who are strangers to A are friends among themselves, this is a group of 4 friends. Otherwise, at least 3 of them are mutual strangers, and together with A they form a group of 4 strangers. \Box

(c) **Theorem:** In every 3 by 3 table containing the digits 1 to 9 each once, some two consecutive digits must appear in the same row or in the same column.

Proof. We prove this by contradiction. Once we fix the placement of 1 there are four positions from which 2 is blocked, namely the two in the same column and the two in the same row. When we position 2 in one of the remaining ones, there are now four more positions from which 3 is blocked. We repeat the argument one more time. There are now a total of $3 \times 4 = 12$ blocked positions so 4 cannot be placed anywhere in the table. This is a contradiction so a table with the desired properties cannot exist.

- 2. Prove the following theorems using the specified proof method.
 - (a) If a is even or b is even then $a^2 \cdot b$ is even. (Cases)
 - (b) If $a^2 \cdot b$ is even then *a* is even or *b* is even. (Contrapositive)
 - (c) Any 3×3 table containing each of the numbers 1 to 9 exactly once has (at least) two even numbers in the same row. (Contradiction)
- 3. Prove the following theorems. Specify your proof method.
 - (a) For every odd integer n, $3n^2 7$ is a multiple of 4.
 - (b) For every integer n, the number $n^3 3n + 2$ is even.
 - (c) For all positive real numbers x and y, if x is irrational, at least one of the numbers x + y, $x^2 + y^2$, x^2 is irrational.

- 4. Which of these propositions are true and which are false? If a proposition is true, prove it. If it is false, prove its negation. (If you claim a number is irrational, provide a proof or give a reference, for example "By Theorem 9 in Lecture 2, $\sqrt{2}$ is irrational.")
 - (a) If $-1 \le x \le 0$ then $x^3 + 3x^2 + x 1 < 0$.
 - (b) $\sqrt{3} + \sqrt{6}$ is an irrational number.
 - (c) For all irrational numbers x, the number $x^2 \sqrt{2}$ is irrational.
 - (d) (**Optional**) $\sqrt{2} + \sqrt{3} + \sqrt{5}$ is an irrational number.