1. Find exact closed form expressions for the following sums. Explain how you discovered the expression and prove that it is correct.
(a) $1^{2}+3^{2}+5^{2}+\cdots+(2 n+1)^{2}$.
(b) $3^{n}+3^{n+1}+3^{n+2}+\cdots+3^{2 n}$.
(c) (Optional) $1 / 2+2 / 2^{2}+3 / 2^{3}+\cdots+n / 2^{n}$.
(Hint: Call this number S. Subtract S from $2 S$ term by term.)
2. Show the following inequalities by using the integral method for approximating sums.
(a) $2 \sqrt{n+1}-2 \leq 1 / \sqrt{1}+1 / \sqrt{2}+\cdots+1 / \sqrt{n} \leq 2 \sqrt{n+1}-1$.
(b) $n^{3} / 3 \leq 1^{2}+2^{2}+\cdots+n^{2} \leq n^{3} / 3+n^{2}$.
(c) $1 \cdot e^{-1^{2}}+2 \cdot e^{-2^{2}}+\cdots+n \cdot e^{-n^{2}} \leq 3 /(2 e)$.
3. Sort the following functions in increasing order of asymptotic growth:

$$
2^{n}, n^{n}, e^{2^{n}}, 2^{e^{n}}, n^{e^{2}}
$$

(For example, if you are given the functions n^{2}, n, and 2^{n}, the sorted list would be $n, n^{2}, 2^{n}$.) Show that for every pair of consecutive functions f, g in your list, f is $o(g)$.
4. Write each of the following summations S as big-theta of a simple closed-form function f. Prove that S is $O(f)$ and f is $O(S)$.
(a) $n+(n+1)+(n+2)+\cdots+2 n$.
(b) $\log (n)+\log (n+1)+\cdots+\log (2 n)$.
(c) $2^{1^{2}}+2^{2^{2}}+\cdots+2^{n^{2}}$. (Hint: Use the geometric sum formula.)

