1. Find exact closed-form solutions to the following recurrences in two ways (by unwinding and by homogenization), and verify the result by induction.
(a) $f(n)=4 f(n-1)+9, f(0)=1$.
(b) $f(n)=\frac{3}{5} f(n-1)+\frac{4}{5}, f(0)=0$.
(c) $f(n)=3 f(n / 2)+n, f(1)=1$, where n is a power of 2 .
2. Find exact closed-form solutions to the following recurrences.
(a) $f(n)=8 f(n-1)-15 f(n-2), f(0)=0, f(1)=1$
(b) $f(n)=f(n-1)+f(n-2)+1, f(0)=0, f(1)=1$
(Hint: Try homogenizing with $f(n)=g(n)+c$ for some constant c.)
3. Recall that a saddle in a table of numbers is an entry that is largest in its column and smallest in its row. In Lecture 2 we showed that every table can have at most one saddle. Here is an algorithm for finding it (if it exists):

Input: A $n \times n$ table T. Assume n is a power of two and all entries of T are distinct.
Algorithm Saddle(T):
If $n=1$, output the (unique) entry in T.
Otherwise,
Recursively run $\operatorname{Saddle}\left(T_{i}\right)$ on each of the four quadrants $T_{1}, T_{2}, T_{3}, T_{4}$ of T.
Let s_{i} be the output of $\operatorname{Saddle}\left(T_{i}\right)$.
Test if s_{i} is a saddle of T by comparing it to
all numbers in its row and column except those in T_{i}.
If one of s_{1}, s_{2}, s_{3}, or s_{4} passes the test, output it.
(a) Show a sample run of Saddle on the following input T :

12	2	5	10
16	7	13	4
15	8	14	9
6	1	11	3

(b) Let $C(n)$ be the worst-case number of comparisons Saddle performs on an $n \times n$ input. Explain why

$$
\begin{equation*}
C(n) \leq 4 C(n / 2)+4 n \tag{1}
\end{equation*}
$$

(c) Apply Theorem 6 from Lecture 7 to calculate the big-Oh asymptotic growth of $C(n)$.
(d) Obtain an exact formula for $C(n)$ assuming the inequality in (1) is an equality. Argue that your solution is an upper bound on the number of comparisons performed by Saddle.
4. DNA (Deoxyribonucleic acid) is a molecule that carries the genetic instructions for all known organisms and many viruses. It consists of a chain of bases. In DNA chain, there are four types of bases: A, C, G, T. For example, a DNA chain of length 10 can be ACGTACGTAT.
(a) Let $g(n)$ be the number of configurations of a DNA chain of length n in which the pairs TT and TG never appear. Write a recurrence for $g(n)$. (Hint: Is the first base a T?)
(b) Solve the recurrence from part (a).
(c) Which one of the alternatives $g(n)=o\left(3^{n}\right), g(n)=\Theta\left(3^{n}\right)$, or $3^{n}=o(g(n))$ is correct?
5. (Optional) You want to move the Towers of Hanoi, but now you have four poles. The rules are the same: n disks are initially stacked by size and the objective is to move them to another pole one by one so that at no point does a larger disk cover a smaller one.
Consider the following strategy: If $n \leq 10$, ignore one of the poles and apply the solution from class for three poles. If $n>10$, recursively move the top $n-10$ disks to the second pole, stack up the bottom 10 disks onto the last pole using the other three poles only, and then recursively move the $n-10$ remaining disks from the second pole to the last pole.
Let $T(n)$ be the number of steps that it takes to move the whole stack of n disks.
(a) Write a recurrence for $T(n)$. Explain why your recurrence is correct.
(b) Show that the recurrence from part (a) satisfies $T(n)=O\left(2^{n / 10}\right)$.
(c) Can you come up with a different strategy in which $2^{O(\sqrt{n})}$ moves are sufficient?

