- 1. For each of the following functions, say if it is (i) injective (ii) surjective. Justify your answer.
 - (a) $f: \{0,1\}^3 \to \{0,1,2,3\}$ given by f((x,y,z)) = x + y + z.
 - (b) $g: \{0,1\}^3 \to \{0,1,2,3,4,5,6,7\}$ given by g((x,y,z)) = x + 2y + 4z.
 - (c) $h: \{0,1\}^3 \to \{0,1,3,4,5,6,7,8\}$ given by h((x,y,z)) = x + 3y + 4z.
- 2. A password consists of the digits 0 to 9 and the special symbols \ast and #. How many 6 to 8-symbol passwords are there if
 - (a) the password starts with a * and ends with a #?
 - (b) there is at least one special symbol?
 - (c) there is exactly one * and exactly two #s?
- 3. How many 8×8 chessboard configurations are there with...
 - (a) 4 white rooks, and all must be in different rows and columns?
 - (b) 2 white and 2 black rooks, and all must be in different rows and columns?
 - (c) 2 white and 2 black rooks, and all rooks of the same color must be in different rows and columns? (Hint: Apply the sum rule after fixing the white rooks' positions.)
- 4. Use the pigeonhole principle to prove that
 - (a) Among any 17 points in the unit square there is a pair within distance at most 0.36.
 - (b) In every set of 14 numbers between 0 and 42 there are three pairs that have the same sum modulo 43.
 - (c) In every group of at least two people there are two that have the same number of friends within the group. (**Hint:** Assume first that everyone has at least one friend.)