1. For each of the following functions, say if it is (i) injective (ii) surjective. Justify your answer.
(a) $f:\{0,1\}^{3} \rightarrow\{0,1,2,3\}$ given by $f((x, y, z))=x+y+z$.
(b) $g:\{0,1\}^{3} \rightarrow\{0,1,2,3,4,5,6,7\}$ given by $g((x, y, z))=x+2 y+4 z$.
(c) $h:\{0,1\}^{3} \rightarrow\{0,1,3,4,5,6,7,8\}$ given by $h((x, y, z))=x+3 y+4 z$.
2. A password consists of the digits 0 to 9 and the special symbols * and \#. How many 6 to 8 -symbol passwords are there if
(a) the password starts with a * and ends with a \#?
(b) there is at least one special symbol?
(c) there is exactly one $*$ and exactly two \#s?
3. How many 8×8 chessboard configurations are there with...
(a) 4 white rooks, and all must be in different rows and columns?
(b) 2 white and 2 black rooks, and all must be in different rows and columns?
(c) 2 white and 2 black rooks, and all rooks of the same color must be in different rows and columns?
(Hint: Apply the sum rule after fixing the white rooks' positions.)
4. Use the pigeonhole principle to prove that
(a) Among any 17 points in the unit square there is a pair within distance at most 0.36 .
(b) In every set of 14 numbers between 0 and 42 there are three pairs that have the same sum modulo 43 .
(c) In every group of at least two people there are two that have the same number of friends within the group. (Hint: Assume first that everyone has at least one friend.)
