1. Consider the following graph properties and determine if such graphs exist. If they do, provide an example. If not, provide a proof of their non-existence.
(a) A graph with 100 vertices of degree 3 and 3 vertices of degree 99 .
(b) A graph with 100 vertices of degree 2 and 2 vertices of degree 99.
(c) A bipartite graph with 100 vertices of degree 2 and 2 vertices of degree 99 .
2. A science fair has participants from schools in X, Y, and Z cities. The table entry $P(r, c)$ in row r and column c represents the average number of projects completed by students from city r in collaboration with students from city c :

	X	Y	Z
X	4	$?$	2
Y	3	5	1
Z	6	2	3

(a) Show that $P(r, c) / P(c, r)$ must equal (number of students from $c) /($ number of students from r).
(b) Use part (a) to show that $P(X, Y) \cdot P(Y, Z) \cdot P(Z, X)=P(Y, X) \cdot P(Z, Y) \cdot P(X, Z)$.
(c) Find the missing entry in the table.
3. The n-dimensional cube Q_{n} is a graph on 2^{n} vertices in which the vertices are all bit strings of length n. Two vertices are adjacent if they differ in exactly one position. Here is a diagram of Q_{3} :

(a) Show that for every $n \geq 1, Q_{n}$ is a bipartite graph.
(b) Show that for every $n \geq 1, Q_{n}$ has a perfect matching.
(c) Assuming n is odd, let R_{n} be the graph obtained by removing all vertices from Q_{n} except those that have exactly $(n-1) / 2$ zeroes or ones. Show that R_{n} is (i) bipartite and (ii) regular.
(d) By part (d) R_{n} has a perfect matching for all odd n. Describe perfect matchings for R_{3} and R_{5}.
4. Find stable matchings for the following preference lists with (a) boys proposing and girls choosing and (b) girls proposing and boys choosing.

