1. Proposition: Every positive integer n can be written as a sum of distinct squares of positive integers. (For example, $45=2^{2}+4^{2}+5^{2}$.)
(a) Show that the proposition is false.

Solution: 2 is not a sum of distinct squares. The only possible representation as a sum of squares uses 1^{2} twice.
(b) Underline and explain the mistake in the following "proof".

Proof. We prove the proposition by strong induction on n. The base case $n=1$ holds because $1=$ 1^{2}. For the inductive step, assume that it is true for all numbers between 1 and $n-1$. If n is the square of some number, then it is also true for n. If not, $m^{2}<n<(m+1)^{2}$ for some number $m>0$. By inductive hypothesis, the number $n-m^{2}$ is a sum of distinct squares $a_{1}^{2}+\cdots+a_{k}^{2}$. Then $n=a_{1}^{2}+\cdots+a_{k}^{2}+m^{2}$ so n is also a sum of distinct squares.

Solution: It was never proved that m^{2} is distinct from all of $a_{1}^{2}, \ldots, a_{k}^{2}$.
2. True or false? Justify your answer. Specify your proof method.
(a) For all integers a, b, c, at least one of the three numbers $a+b, b+c, c+a$ is even.

Solution: True. We prove it by contradiction. Suppose $a+b, b+c$, and $c+a$ are all odd. The sum of all three must then be odd. But the sum equals $2(a+b+c)$ which is an even number, a contradiction. This proof can also be formulated using modular arithmetic: Assuming $a+b \equiv 1$ and $b+c \equiv 1$ and $c+a \equiv 1$ modulo 2 , adding the equations yields the conclusion

$$
0=0 a+0 b+0 c \equiv 2 a+2 b+2 c \equiv 1+1+1 \equiv 1 \quad(\bmod 2)
$$

which is a contradiction.
(b) For all integers a, b, c, at least one of the three numbers $a+b, b+c, c+a$ is odd.

Solution: False. When $a=b=c=0$ then all three numbers are zero therefore all are even.
3. A long ledge is divided into slots numbered from 1 to 49 .

A white ball and a black ball are placed in the first and last slot, respectively. In every step one of the balls is moved 5 slots to the left or 10 slots to the right of its current position.
(a) Formulate this process as a state machine. Describe the states, start state, and transitions.
(Hint: The state should describe the positions of both balls.)
Solution: The states are ordered pairs of numbers (w, b) between 1 and 49 describing the white and black ball's slot respectively. The start state is $(1,49)$. The transitions are

$$
(w, b) \rightarrow(w-5, b) \text { OR }(w+10, b) \text { OR }(w, b-5) \text { OR }(w, b+10) .
$$

(b) Fill in the two blanks so that the following predicate is an invariant. Provide a proof.

The slot numbers of the black and white balls differ by $\underline{3}$ modulo $\underline{5}$.

Solution: In the start state, $49-1=48 \equiv 3(\bmod 5)$ so the invariant holds. Now assume $b-w \equiv 3$ $(\bmod 5)$ in a given state. The transitions change the value of $b-w$ by $+5,-10,-5$, and -10 respectively. As all these numbers are 0 modulo 5 the value $b-w(\bmod 5)$ remains the same.
(c) Can the two balls ever occupy adjacent slots? Justify your answer.

Solution: No. If the balls occupy adjacent slots then $b-w$ equals to 1 or -1 , that is 1 or 4 modulo 5 . The invariant is not satisfied so such a state can never be reached.
4. Bob is waiting for a secret message from Alice. He publishes RSA modulus $n=21$ and public key $e=5$.
(a) Alice's message is $m=8$. What is the ciphertext that she sends out? Show your calculations.

Solution: The ciphertext is $m^{e} \bmod n$, namely

$$
8^{5} \equiv 8 \cdot 8^{4} \equiv 8 \cdot 64^{2} \equiv 8 \cdot 1^{2}=8 \quad(\bmod 21)
$$

because $64=3 \cdot 21+1 \equiv 1(\bmod 21)$.
(b) Alice sends another ciphertext $c=2$ and this one is intercepted by Eve. What was Alice's message?

Solution: As n is the product of the two primes $p=3$ and $q=7$, Eve can recover the decryption key by solving for $e d \equiv 1(\bmod (p-1)(q-1))$, namely $5 d \equiv 1(\bmod 12)$. Extended Euclid's algorithm gives

$$
\begin{aligned}
E(12,5) & =E(5,2) & & 12=2 \cdot 5+2 \\
& =E(2,1) & & 5=2 \cdot 2+1
\end{aligned}
$$

from where $1=5-2 \cdot 2=5-2 \cdot(12-2 \cdot 5)=-2 \cdot 12+5 \cdot 5$, so d equals 5 . The ciphertext decrypts to $c^{d} \bmod n$, which equals $2^{5}=32 \equiv 11(\bmod 21)$. Alice's message was 11 .

BONUS. What is

$$
2^{2^{2^{2^{2^{2^{2}}}}}} \bmod 11 ?
$$

By Fermat's little theorem, reducing the exponent modulo 10 does not change the answer. As the exponent is an even number and $10=2 \cdot 5$,

$$
2^{2^{2^{2^{2^{2}}}}} \bmod 10=2 \cdot\left(2^{2^{2^{2^{2^{2}}}}} / 2 \bmod 5\right)=2 \cdot\left(2^{2^{2^{2^{2^{2}}}}-1} \bmod 5\right)
$$

Using Fermat's little theorem again we find

$$
2^{2^{2^{2^{2^{2}}}}-1} \equiv 2^{\left(2^{2^{2^{2^{2}}}}-1\right) \bmod 4} \equiv 2^{-1 \bmod 4} \equiv 2^{3} \equiv 3 \quad(\bmod 5)
$$

Therefore

$$
2^{2^{2^{2^{2^{2^{2}}}}}} \equiv 2^{2^{2^{2^{2^{2^{2}}}}}} \bmod 10 ~ \equiv 2^{2 \cdot 3}=64 \equiv 9 \quad(\bmod 11)
$$

