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Practice Final 1

1. Prove that for every integer n there exists an integer k such that |n2 − 5k| ≤ 1. (Hint: What is n2 mod 5?)

Solution: First we check that for all n, n2 mod 5 equals 0, 1 or 4:

n mod 5 0 1 2 3 4

n2 mod 5 0 1 4 4 1

Since 4 ≡ −1 (mod 5) it follows that for every n, n2 is congruent to 0, 1, or −1 modulo 5. Therefore n2 is
of the form 5k or 5k − 1 or 5k + 1 for some integer k. In all cases |n2 − 5k| ≤ 1.

2. Alice places two pebbles at the opposite corners of an 8 by 8 chessboard. At each step, she can

• put a new pebble in an empty square, if exactly one of its neighbors contains a pebble, or

• remove a pebble from a square, if at least one of its neighbors contains a pebble.

Neighbors are squares that share a common side. Can the board ever have a single pebble on it?

(a) Define a suitable graph G for which “G has two or more connected components” is an invariant. Prove
the invariant.

Solution: G is the graph whose vertices are the pebbles and edges are pebbles on neighboring squares.
Initially G has two connected components so the invariant holds. We show that the number of connected
components cannot decrease after a transition. For the first type of move it remains the same because
the new pebble extends an existing component without affecting the others. For the second type of
move, the component that the removed pebble belongs to may break up up into one or more components,
while the other components are unaffected, so the number of components cannot decrease.

(b) Can the board ever have a single pebble on it?

Solution: No, because the corresponding graph has one vertex and therefore only one connected
component.

3. Sort these three functions in increasing order of growth:
√
n · log n, n/

√
log n,

√
n · log n. For your sorted

list f, g, h show that f is o(g) and g is o(h).

Solution:
√
n log n is o(

√
n log n) because the ratio

√
n log n/

√
n log n equals 1/

√
log n, which eventually be-

comes and stays smaller than any given constant.
√
n log n is o(n/

√
log n) because the ratio

√
n log n/(n/

√
log n)

equals (log n)3/2/n1/2. In Lecture 7 we showed that (log n)a is o(nb) for any constants a, b > 0, so this ratio
becomes and stays smaller than any constant when n is sufficiently large.

4. What is the multiplicative inverse of 100 modulo 1009? Show your work.

Solution: We look for numbers s and t such that 100s+ 1009t = 1. The extended Euclid’s algorithm goes
through the steps

1009 = 10 · 100 + 9

100 = 11 · 9 + 1,

from where
1 = 100− 11 · 9 = 100− 11 · (1009− 10 · 100) = 111 · 100− 11 · 1009

so we can set s = 111 and t = −11. Therefore 100 · 111 ≡ 1 mod 1009 and 111 is the desired multiplicative
inverse.



5. Find a stable matching for these preferences and show that there is no other stable matching.

Alex Bob Carl

Dana Eve Faye

1 2 3 2 3 1 3 2 1

2 1 3 2 1 3 3 2 1

Solution: Consider the marked matching {Alex,Eve}, {Bob,Dana}, {Carl,Faye}. We show that no other
matching is stable. As a stable matching always exists, this one must be stable.

In any stable matching, Carl must be matched to Faye because they are each other’s first choice (so they
would be a rogue couple if not matched). For the rest, the matching {Alex,Dana}, {Bob,Eve} can be ruled
out because Bob and Dana would be a rogue couple. This leaves the above matching as the only stable
possibility.

Alternative solution: If we run the Gale-Shapley algorithm, on day 1 Alex proposes to Dana and Bob and
Carl propose to Faye. Faye picks Carl, so on day 2 both Alex and Bob propose to Dana. Dana picks Bob,
so the final matching is {Alex,Eve}, {Bob,Dana}, {Carl,Faye}. We proved in Lecture 5 that this is stable.

Let us now run the Gale-Shapley algorithm again, but with the girls doing the proposing this time around.
On day 1 Dana and Eve propose to Bob and Faye proposes to Carl. Carl picks Faye and Bob picks Dana
over Eve. On day 2 Eve proposes to Alex resulting in the same final stable matching.

By Theorem 6 in Lecture 8, the first matching is the best possible for the boys (every boy gets his best
possible choice among all stable matchings), while the second one is the worst possible for the boys (every
boy gets his worst possible choice). Since they are the same there can be only one stable matching.

6. The number of length-n strings with symbols {A, B, C} in which no symbol appears consecutively three times
(i.e., the patterns AAA, BBB, CCC are forbidden) is Θ(an).

(a) Write a recurrence for the number f(n) of such strings that start with a fixed symbol (say an A).

Solution: If the second symbol is not an A then the remaining part can be any string of the same type
that starts with a B or a C, so there are 2f(n− 1) choices for it. If the second symbol is an A then the
third symbol must be a B or a C and there are 2f(n − 2) choices for the remaining part. Therefore f
satisfies the recurrence f(n) = 2f(n− 1) + 2f(n− 2).

(b) Find the number a.

Solution: Removing the restriction that the string starts with a fixed symbol triples the count so it
has the same big-theta asymptotics as f(n). The recurrence solution f(n) is a linear combination of xn1
and xn2 , where x1 and x2 are the roots of x2 = 2x+2. The two roots are x1 = 1+

√
3 and x2 = 1−

√
3.

As x2 is less than 1 it must be that f(n) is Θ(x1)
n so a = 1 +

√
3.

Practice Final 2

1. What is 1 + (1 + 2) + (1 + 2 + 3) + · · ·+ (1 + 2 + 3 + · · ·+ 1000)?

Solution: The sum of the first k integers is k(k + 1)/2 = 1
2k

2 + 1
2k, so

1 + (1 + 2) + · · ·+ (1 + 2 + 3 + · · ·+ n) = 1
2(1

2 + 22 + · · ·+ n2) + 1
2(1 + 2 + · · ·+ n)

= 1
2(

1
3n

3 + 1
2n

2 + 1
6n) +

1
2(

1
2n

2 + 1
2n)

= 1
6n

3 + 1
2n

2 + 1
3n



using the formulas for the sum of the first n squares of integers and the sum of the first n integers, respectively.
(Notice that this expression gives the correct answer for n = 0, 1, and 2.) Plugging in n = 1000 we obtain
the answer 1

6 · 109 + 1
2 · 106 + 1

3 · 103 = 167, 167, 100.

Alternative solution: as 1+2+ · · ·+n = n(n+1)/2 we may guess that 1+(1+2)+ · · ·+(1+2+3+ · · ·+n)
has the form an3 + bn2 + cn+ d. Plugging in n = 0, 1, 2, 3 we get that a, b, c, d must satisfy

d = 0

a+ b+ c+ d = 1

8a+ 4b+ 2c+ d = 1 + (1 + 2) = 4

27a+ 9b+ 3c+ d = 4 + (1 + 2 + 3) = 10

Eliminating first d and then c we get 6a+2b = 2 and 24a+6b = 7. This solves to 2b = 1. Therefore b = 1/2.
Plugging back in we get a = 1/6 and c = 1/3.

We now verify that the sum equals 1
6n

3 + 1
2n

2 + 1
3n by induction on n. The base case n = 1 was already

checked. As for the inductive step we assume the claim is true for n and verify it for n+ 1:

1 + (1 + 2) + · · ·+ (1 + · · ·+ (n+ 1)) = 1
6n

3 + 1
2n

2 + 1
3n+ (1 + · · ·+ (n+ 1))

= 1
6n

3 + 1
2n

2 + 1
3n+

(n+ 1)(n+ 2)

2
= 1

6(n
3 + 3n2 + 3n+ 1) + 1

2(n
2 + 2n+ 1) + 1

3(n+ 1)

= 1
6(n+ 1)3 + 1

2(n+ 1)2 + 1
3(n+ 1).

Plugging in n = 1000 we obtain the same answer as above.

2. A department has 10 men and 15 women. How many ways are there to form a committee with six members
if it must have...

(a) the same number of men and women?

Solution: We apply the product rule. There are
(
10
3

)
ways to choose the three men in the committee

and
(
15
3

)
ways to choose the three women in it, so the number of possible committees is

(
10
3

)
·
(
15
3

)
.

(b) at least one man and at least one woman?

Solution: The number of possible committees is
(
25
6

)
, the number of men-only committees is

(
10
6

)
, and

the number of women-only committees is
(
15
6

)
. By the sum rule the number is

(
25
6

)
−
(
15
6

)
−
(
10
6

)
.

3. Show that for every integer n, if n3 + n is divisible by 3 then 2n3 + 1 is not divisible by 3.

Solution: We can prove this proposition by cases depending on the residue of n3+nmodulo 3. If n ≡ 0 mod 3
then n3 + n is divisible by 3, while 2n3 + 1 ≡ 1 mod 3, so 2n3 + 1 is not divisible by 3, so the proposition
holds. If n ≡ 1 mod 3 then n3+n ≡ 2 mod 3, so n3+n is not divisible by 3 and the proposition holds again.
If n ≡ 2 mod 3, then n3 + n ≡ 2 mod 3 and n3 + n is not divisible by 3 again.

4. An n × n plot of land (n is a power of two) is split in two equal parts by a North-South fence.
The Western half is sold and the Eastern half is split in two equal parts by an West-East fence.
The same procedure is applied to the remaining (n/2)× (n/2) plots until 1×1 plots are obtained
(see n = 4 example). How many units of fence are used?

S
O
L
D

S
O
L
D

S
O
L
D

(a) Let T (n) be the units of fence used. Write a recurrence for T (n).

Solution: The amount of fence for an n× n field is twice the amount used for a field half the size plus
n units of vertical fence plus n/2 units of horizontal fence, giving the recurrence T (n) = 2T (n/2)+3n/2
for n > 1. The initial condition is T (1) = 0.



(b) Solve the recurrence.

Solution: We can unwind the recurrence as follows:

T (n) = 2T (n/2) + 3/2 · n
= 2(2T (n/22) + 3/2 · n/2) + 3/2 · n = 22T (n/22) + 3/2 · 2n
= 22(2T (n/23) + 3/2 · n/22) + 3/2 · 2n = 23T (n/23) + 3/2 · 3n

After log n steps we expect to obtain T (n) = n · T (1) + 3
2n log n = 3

2n log n.

(c) Prove that your answer is correct using induction.

For the base case n = 1, T (1) = 0 as desired. For the inductive step we assume T (k) = 3
2k log k for all

k < n that are powers of two. Then

T (n) = 2T (n/2) + 3n/2 = 2 · 3
2
· n
2
log(n/2) +

3n

2
=

3n

2
· (log n− 1) +

3n

2
=

3

2
· n log n

when n is a power of two, concluding the inductive step.

5. Let G be the following graph. The vertices of G are all the integers between −10 and 10 except for 0 (20
vertices in total). The pair {x, y} is an edge of G if (and only if) −30 < xy < 0.

(a) Show that G is bipartite.

Solution: G is bipartite with respect to the partition N,P with N = {−10, . . . ,−1} and P =
{1, . . . , 10}: If x and y are both in P or both in N then xy > 0 so {x, y} is not an edge of G.

(b) Show that G does not have a perfect matching.

Solution: To show that G has no perfect matching, we exhibit a subset S of P of size 5 whose
neighbour set has size at most 4. By Hall’s theorem, the vertices in S cannot all be matched. Take
S = {6, 7, 8, 9, 10}. The vertices −5, −6, −7, −8, −9 and −10 are not neighbours of S since any product
between one of this numbers and a number in S is at most −5 · 6 = −30. Therefore S can have at most
4 neighbours.

6. A cut-edge in a connected graph is an edge e such that if e was removed, the graph would no longer be
connected. Show that any connected graph in which all vertices have even degree does not have a cut-edge.

Solution: We prove this is impossible by contradiction. Suppose there exists a connected graph G with
exactly one cut-edge e = {u, v} in which all vertices have even degree. Let G′ be the graph obtained by
removing the edge e from G. Then u and v must belong to different connected components C and C ′ of
G′ (for otherwise removing e from G would not disconnect it.) All the vertices of C except for u have even
degree, so C has exactly one vertex of odd degree. Therefore the sum of the degrees of the vertices in C is
odd. This is impossible: In lecture 5 we showed that the sum of the degrees of all vertices in a graph (and
therefore in all of its connected components) must be even.

Practice Final 3

1. Write the proposition “There is at most one ball in every urn” using logical connectives and quantifiers. Use
the symbols b1, b2 for balls, u1, u2 for urns and IN(b, u) for “ball b is in urn u”.

Solution: ∀u, b1, b2 : IN(b1, u) and IN(b2, u) −→ b1 = b2. Any two balls in any given urn must be the same
ball.

2. The sequence f(n) is given by f(n+ 1) = 2f(n) for n ≥ 1 with f(0) = 2.

(a) Calculate f(n) mod 5 for n = 1, n = 2, and n = 3.

Solution: f(1) = 22 = 4, f(2) = 2f(1) = 16 so f(2) ≡ 1 (mod 5), f(3) = 216. This is a pretty large
number but we can calculate 216 (mod 5) using Fermat’s little Theorem: 216 ≡ (24)4 ≡ 14 ≡ 1 (mod 5).



(b) Give a formula for f(n) mod 5 for all n ≥ 4. Justify your answer.

Solution: 2k ≡ 1 (mod 5) whenever k is a multiple of 4. As f(n) is a multiple of 4 for every n ≥ 1 (it
is a product of many 2s) we get that we get that f(n+ 1) = 2f(n) ≡ 1 (mod 5) for all n ≥ 1.

3. Blocks of height one are stacked in layers in some formation. Each layer has strictly fewer blocks than the
one under it. For example the 7-block formation below has height 3. Show that the height of an n-block
formation is O(

√
n).

Solution: A formation of height k must have at least i blocks in its i-th level from the top because
the number of blocks increases by one in each level. Therefore the number of blocks n must be at least
1 + 2 + · · ·+ k = k(k + 1)/2 > k2/2. Therefore k <

√
2n which is O(

√
n).

4. You drop 30 balls into 7 urns. Some of the balls are red and some are blue. Show that at least three balls
of the same colour land in the same urn.

Solution: Let f : {1, . . . , 30} → {1, . . . 7} × {red,blue} be the function that assigns each ball to its urn and
its colour. The domain of f has size 30 and its range has size 7 · 2 = 14. Since 30 > 2 · 14, by the generalized
pigeonhole principle there exist 3 balls that are assigned to the same urn and have the same colour.

5. G is a directed graph whose vertices are the integers from −10 to 10 (inclusive) and whose edges (x, y) are
those ordered pairs for which |x| − |y| = 1. For each of the following claims, say if it is true or false and
provide a proof.

(a) G has a path of length 10.

Solution: True. The path (10, 9, 8, . . . , 0) has length 10.

(b) G has a parallel schedule of duration 11.

Solution: True. G cannot have a path of length 11 because the absolute value of vertices starts at 10
and must decrease along any path. As G has a parallel schedule whose length is the maximum path
length plus one it must have a parallel schedule of size 11.

(c) G has an antichain of size 6.

Solution: True. The set {−10, 10,−8, 8,−6, 6} is one such antichain.

6. The vertices of graph Hn are the n integers from −n to n except 0. The edges of Hn are the pairs {x, y}
such that x = −y or |y − x| = 1.

(a) Show that Hn is bipartite.

Solution: Let A be the union of even positive and odd negative vertices and B be the union of even
negative and odd positive vertices. There are no edges within A and no edges between B.

(b) How many perfect matchings do H1 and H2 have?

Solution: H1 consists of a single so it has one perfect matching. H2 is a cycle of length 4 so it has
two, namely {{−1, 1}, {−2, 2}} and {{−2,−1}, {1, 2}}.

(c) How many perfect matchings does H10 have? (Hint: Write a recurrence.)

Solution: Let f(n) denote the number of matching of the analogous graph Hn with 2n vertices in
which the integers −10 and 10 are replaced by −n and n. There are two possible ways in which vertex
n can be matched: Either it is matched to −n, in which case the remaining vertices to be matched
induce the graph Hn−1, or it is matched to n− 1, in which case −n must also be matched to −(n+ 1)
and the remaining vertices to be matched induce the graph Hn−2. Therefore the number of matchings
f(n) satisfies the recurrence f(n) = f(n− 1) + f(n− 2) for all n ≥ 2 with f(1) = 1 and f(2) = 2. This
is the Fibonacci recurrence and we can calculate the following values for f(n) when n ≤ 10:



n 1 2 3 4 5 6 7 8 9 10

f(n) 1 2 3 5 8 13 21 34 55 89

so f(10) = 89.

Practice Final 4

1. Let P (n) be the statement “There exists an n × n table of numbers in which the sum of every row is even
and the sum of every column is odd”.

(a) Prove that P (2) is true. Specify your proof method.

Solution: We prove it by constructing an example:

1 1

2 2

(b) Prove that P (3) is false. Specify your proof method.

Solution: We prove this by contradiction. Suppose such a 3× 3 table exists. Let S be the sum of all
nine entries. S can be obtained by adding the three row-sums, all of which are even, so it must be even.
It can also be obtained by adding the three column-sums, all of each are odd, so it must also be odd.
Contradiction.

2. Let B0 = 0, B1 = 1, and Bn = Bn−1 +
1
2Bn−2 for all n ≥ 2. Prove that Bn ≥ ((1 +

√
3)/2)n−2 for all n ≥ 1.

Specify your proof method.

Solution: We prove the inequality by strong induction on n. In the base case n = 1, ((1 +
√
3)/2)−1 =

2/(1 +
√
3) ≤ 2/(1 + 2) ≤ 1 as desired. When n = 2, B2 = B1 +

1
2B0 = 1 which equals ((1 +

√
3/2)0 as

desired again. Now assume the inequality is true for n− 1 and n− 2. Then

Bn = Bn−1 +
1

2
Bn−2

≥
(
1 +

√
3

2

)n−3

+
1

2

(
1 +

√
3

2

)n−4

=

(
1 +

√
3

2

)n−4(1 +
√
3

2
+

1

2

)
=

(
1 +

√
3

2

)n−4(1 +
√
3

2

)2

=

(
1 +

√
3

2

)n−2

.

In the second step we applied the identity(
1 +

√
3

2

)2

=
1 + 2

√
3 + 3

4
=

1 +
√
3

2
+

1

2
.

3. Find integers x and y between 0 and 16 that satisfy the following equations. Justify your steps.

4x+ 3y ≡ 2 (mod 17)

3x+ 4y ≡ 3 (mod 17).

Solution: After eliminating x we get 7y ≡ 6 (mod 17). To find the multiplicative inverse of 7 we apply
extended Euclid’s algorithm:

E(17, 7) = E(7, 3) 17 = 2 · 7 + 3

= E(3, 1) 7 = 3 · 2 + 1

= E(1, 0)



from where
1 = 7− 2 · 3 = 7− 2 · (17− 2 · 7) = −2 · 17 + 5 · 7.

Therefore 7−1 ≡ 5 (mod 17) and y ≡ 6 · 5 ≡ 13 (mod 17).

We can solve for x by substituting in the first equation but this would require taking another inverse. Instead
if we subtract the equations we get x− y ≡ −1 (mod 17) so x ≡ y − 1 ≡ 12 (mod 17).

4. Does there exist a graph G with five vertices a, b, c, d, e such that

(a) The degrees of the five vertices are

v a b c d e

deg v 3 3 2 1 1

Solution: Yes, for example

d a b e

c

(b) The degrees are as in part (a) and G is bipartite?

Solution: No. We prove that this is impossible by contradiction. In a bipartite graph (S, T ) the sum
of the degrees in S and T must be the same, namely (3 + 3+ 2+ 1+ 1)/2 = 5. Therefore a and b must
be assigned to opposite sides of the partition, say a to S and b to T . As one of the sets, say T , will
have size at most two, a cannot have three neighbors, a contradiction.

5. Let G be the following graph.

(a) Show that G is bipartite.

Solution: The following partition of the vertices into White and Black demonstrates that G is bipartite
as there are no edges within W or within B.

(b) Does G have a perfect matching? Justify your answer.

Solution: No. There are 10 vertices in B and 12 in W , so the vertices in W cannot all be matched.

6. Alice, Bob, and Charlie play a game. Initially Alice holds $1, Bob holds $2, and Charlie holds $5. In each
round every player splits their holdings evenly in two and gives them away to the other two players.

(a) Let a(n) be Alice’s holdings after n rounds. Calculate a(1) and a(2).

Solution: a(1) = (2 + 5)/2 = 7/2. To calculate a(2) we need to know how much Bob and Charlie
hold in round 1: Bob holds b(1) = (1 + 5)/2 = 3 and Charlie holds c(1) = (1 + 2)/2 = 3/2. Then
a(2) = (3 + 3/2)/2 = 9/4.



(b) Show that a(n+ 1) = 4− a(n)/2. (Hint: The sum of all players’ holdings remains invariant.)

Solution: For every n, a(n) + b(n) + c(n) must equal 8. Therefore a(n + 1) = (b(n) + c(n))/2 =
(8− a(n))/2 = 4− a(n)/2.

(c) Solve the recurrence from part (b) with initial condition a(0) = 1 by unfolding or homogenization.

Solution: We unwind the recurrence:

a(n) = −1

2
a(n− 1) + 4

= −1

2

(
−1

2
a(n− 2) + 4

)
+ 4 =

(
−1

2

)2
a(n− 2)− 1

2
· 4 + 4

=
(
−1

2

)2(
−1

2
a(n− 3) + 4

)
− 1

2
· 4 + 4 =

(
−1

2

)3
a(n− 3) +

(
−1

2

)2
· 4− 1

2
· 4 + 4

= · · ·

=
(
−1

2

)n
a(0) +

(
−1

2

)n−1
· 4 +

(
−1

2

)n−2
· 4 + · · ·+ 4.

Plugging in a(0) = 1 and using the geometric sum formula we get

a(n) =
(
−1

2

)n
+ 4 · 1− (−1/2)n

3/2
=

8

3
− 5

3
·
(
−1

2

)n
.

This evaluates to a(0) = 1, a(1) = 7/3, a(2) = 9/4 which is consistent with part (a).

Alternative solution: We try the homogenization a(n) = a′(n)+ c to get a′(n+1)+ c = 4− (a′(n)+
c))/2 = 4− a′(n)/2− c/2, from where c must equal 8/3. We solve a′(n) to

a′(n) = (−1/2)a′(n− 1) = (−1/2)2a′(n− 2) = · · · = (−1/2)na′(0) = (−1/2)n · (−5/3).

Therefore a(n) = 8/3− (5/3)(−1/2)n.


