Practice Midterm 1

1. Are the propositions "Every two people have a common friend" and "Every person has at least two friends" logically equivalent? Justify your answer.
2. Alice has infinitely many $\$ 6, \$ 10$, and $\$ 15$ stamps. Can she make all integer postages of $\$ 30$ and above?
3. Prove that for every integer n there exists an integer k such that $\left|n^{2}-5 k\right| \leq 1$. (Hint: What is $n^{2} \bmod 5$?)
4. The numbers 12345678 are listed in order. In each step you can take three consecutive numbers $a b c$ and reorder them as $c a b$, for example $25431687 \rightarrow 25438167$. Can you ever obtain 81234567 ?

Practice Midterm 2

1. Express the sentence "Any two people who are not friends have a friend in common" using quantifiers and logical operators. Use x, y, z as variables and $F(x, y)$ for " x and y are friends."
2. Show that for every integer n, if $n^{3}+n$ is divisible by 3 then $2 n^{3}+1$ is not divisible by 3 .
3. Can 4 be expressed as an integer linear combination of 47 and 13? If no, provide a proof. If yes, give such a combination and explain how you obtained it.
4. Claim: For every $n \geq 1$, a $2^{n} \times 2^{n}$ board with one square removed (in any position) can be filled with tiles T_{1}, \ldots, T_{n} below (one of each type).

(a) Describe a tiling for the following board ($n=3$ with square (5,2) missing).

(b) Prove the claim. Specify your proof method.

Practice Midterm 3

1. Underline and explain the mistake in the following "proof."

Theorem. In every group of friends there exists a person with an even number of friends.
Proof. By induction on the number of people n. When $n=1$ the one person has zero friends, and zero is even. Now assume it is true for groups of n people. Let G be a group of $n+1$ people. Take out any person from G. By inductive hypothesis the remaining group G^{\prime} has someone, say Alice, with an even number of friends. Since Alice is also in G, G has a person with an even number of friends.
2. Prove that for every positive integer $n, \operatorname{gcd}\left(n^{2}+n+1, n+1\right)=1$.
(Hint: Use the connection between gcd and combinations.)
3. For which nonzero integers n is the number $\frac{\sqrt{2}}{n}-\frac{n}{\sqrt{2}}$ rational? Justify your answer.
4. Bob has 32 blue, 33 red, and 34 green balls. At every turn he takes out two balls and replaces them with two different balls by the following replacement rule:

$$
b g \rightarrow r r \quad g r \rightarrow b b \quad r b \rightarrow g g \quad r r \rightarrow b g \quad b b \rightarrow g r \quad g g \rightarrow r b .
$$

(a) Formulate this game as a state machine. Describe the states, start state, and transitions mathematically.
(b) Can Bob obtain 99 balls of the same color? Justify your answer.
(Hint: Look at the difference between the number of red and blue balls.)

Practice Midterm 4

1. Is the following deduction rule valid?

$$
\frac{\forall x \exists y: P(x, y) \quad \exists x \forall y: P(x, y)}{\forall x \forall y: P(x, y)}
$$

2. Show that for every positive real number x, at least one of the numbers $\sqrt{x}+1$ and $\sqrt{2} \cdot x$ is irrational.
3. Bob has received from Alice the RSA ciphertext $c=2$. The modulus is $n=p q$ with $p=3$ and $q=5$. The encryption key is $e=3$.
(a) Calculate Bob's decryption key d.
(b) Decrypt Alice's message m.
4. A knight jumps around an infinite chessboard. Owing to injury it can only make these four moves:

(a) Formulate this game as a state machine. Describe the states, start state, and transitions mathematically.
(b) Can the knight ever reach the square immediately to the left of its initial one?
