Let

$$
S(n)=1+n+n^{2}+n^{3}+\cdots+n^{n-1} .
$$

Circle one of the following alternatives:

$$
S \text { is } o\left(n^{n}\right) \quad n^{n} \text { is } o(S) \quad S \text { is } \Theta\left(n^{n}\right)
$$

Justify your answer.
Solution: By the geometric sum formula,

$$
S(n)=\frac{n^{n}-1}{n-1}
$$

When $n \geq 2, n^{n}-1 \leq n^{n}$ and $n-1 \geq n / 2$ and so

$$
S(n) \leq \frac{n^{n}}{n / 2}=2 n^{n-1}=\frac{2}{n} \cdot n^{n}
$$

which is $o\left(n^{n}\right)$ as $2 / n$ is smaller than any fixed constant when $n$ is large.
Alternative solution: Each of the first $n-1$ terms of $S(n)$ is not greater than $n^{n-2}$. Therefore

$$
S(n) \leq(n-1) n^{n-2}+n^{n-1} \leq 2 n^{n-1}
$$

is $O\left(n^{n-1}\right)$, so it is $o\left(n^{n}\right)$.

