Find the exact closed-form solution to the recurrence

$$
f(n)=\frac{2}{3} f(n-1)+2, \quad f(0)=0 .
$$

Solution: We unwind the formula for $f(n)$:

$$
\begin{aligned}
f(n) & =\frac{2}{3} f(n-1)+2 \\
& =\frac{2}{3}\left(\frac{2}{3} f(n-2)+2\right)+2=\left(\frac{2}{3}\right)^{2} f(n-2)+\frac{2}{3} \cdot 2+2 \\
& =\left(\frac{2}{3}\right)^{2}\left(\frac{2}{3} f(n-3)+2\right)+\frac{2}{3} \cdot 2+2=\left(\frac{2}{3}\right)^{3} f(n-3)+2\left(\left(\frac{2}{3}\right)^{2}+\frac{2}{3}+1\right) .
\end{aligned}
$$

Continuing in this manner for n steps we get

$$
f(n)=\left(\frac{2}{3}\right)^{n} f(0)+2\left(1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots+\left(\frac{2}{3}\right)^{n-1}\right) .
$$

By the initial condition $f(0)=0$ and the geometric sum formula, we have

$$
f(n)=2 \cdot \frac{1-\left(\frac{2}{3}\right)^{n}}{1-\frac{2}{3}}=6\left(1-\left(\frac{2}{3}\right)^{n}\right)=6-6\left(\frac{2}{3}\right)^{n} .
$$

Alternative solution: We homogenize the recurrence to $f(n)+c=\frac{2}{3}(f(n-1)+c)$ for some constant c. For the original recurrence to hold it must be that $2+c=\frac{2}{3} c$ which solves to $c=-6$. Therefore

$$
f(n)-6=\frac{2}{3}(f(n-1)-6)=\left(\frac{2}{3}\right)^{2}(f(n-2)-6)=\cdots=\left(\frac{2}{3}\right)^{n}(f(0)-6) .
$$

As $f(0)$ equals 0 we get $f(n)=6-6 \cdot\left(\frac{2}{3}\right)^{n}$.

