- 1. Calculate the following numbers.
 - (a) $98 + 96 + 94 + 92 + 90 \mod 100$

Solution: We can calculate it directly as $470 \mod 100 = 70$, or using the rules of modular arithmetic,

$$98 + 96 + 94 + 92 + 90 \equiv -2 - 4 - 6 - 8 - 10 \equiv -(2 + 4 + 6 + 8 + 10) \equiv -30 \equiv 70 \pmod{100}$$
.

(b) $17 \cdot 23 - 2 \cdot 3 \mod 17$

Solution: $17 \cdot 23 - 2 \cdot 3 \mod 17 \equiv 0 \cdot 6 - 2 \cdot 3 \pmod{17} \equiv (-6) \pmod{17} \equiv 11 \pmod{17}$.

(c) $9^{-1} \mod 23$

Solution: We first calculate $9^{-1} \mod 23$ using the extended GCD algorithm:

$$E(23,9) = E(9,5)$$
 $23 = 2 \cdot 9 + 5$
 $= E(5,4)$ $9 = 5 + 4$
 $= E(4,1)$ $5 = 4 + 1$
 $= E(1,0)$.

so we can write 1 as the following combination of 23 and 9:

$$1 = 5 - 4 = 5 - (9 - 5) = -9 + 2 \cdot 5 = -9 + 2 \cdot (23 - 2 \cdot 9) = 2 \cdot 23 - 5 \cdot 9$$

It follows that $9^{-1} \equiv -5 \pmod{23} \equiv 18 \pmod{23}$.

(d) $95 \cdot 41^{-1} \mod 97$. (97 is a prime number.)

Solution: We first calculate $41^{-1} \mod 97$ using the extended GCD algorithm:

$$E(97,41) = E(41,15) 97 = 2 \cdot 41 + 15$$

$$= E(15,11) 41 = 2 \cdot 15 + 11$$

$$= E(11,4) 15 = 11 + 4$$

$$= E(4,3) 11 = 2 \cdot 4 + 3$$

$$= E(3,1) 4 = 3 + 1$$

$$= E(1,0) 3 = 3 \cdot 1 + 0$$

Now we use the equations in reverse to express 1 as a combination of 97 and 41:

$$1 = 4 - 3$$

$$= 4 - (11 - 2 \cdot 4)$$

$$= -11 + 3 \cdot 4$$

$$= -11 + 3 \cdot (15 - 11)$$

$$= 3 \cdot 15 - 4 \cdot 11$$

$$= 3 \cdot 15 - 4 \cdot (41 - 2 \cdot 15)$$

$$= -4 \cdot 41 + 11 \cdot 15$$

$$= -4 \cdot 41 + 11 \cdot (97 - 2 \cdot 41)$$

$$= 11 \cdot 97 - 26 \cdot 41$$

It follows that $41^{-1} \equiv -26 \pmod{97}$. Therefore

$$95 \cdot 41^{-1} \equiv 95 \cdot (-26) \equiv (-2) \cdot (-26) \equiv 52 \pmod{97}$$
.

- 2. Calculate the following numbers using the suggested method:
 - (a) 2⁹ mod 11 using iterated multiplication.

Solution: $2^9 \equiv 4 \cdot 2^7 \equiv 8 \cdot 2^6 \equiv 16 \cdot 2^5 \equiv 5 \cdot 2^5 \equiv 10 \cdot 2^4 \equiv 20 \cdot 2^3 \equiv 9 \cdot 2^3 \equiv 18 \cdot 2^2 \equiv 7 \cdot 2^2 \equiv 14 \cdot 2 \equiv 3 \cdot 2 \equiv 6 \pmod{11}$.

(b) $2^{81} \mod 11$ using fast exponentiation (the *Power* algorithm from Lecture 5).

Solution: $2^{81} \equiv 2 \cdot 2^{80} \equiv 2 \cdot 4^{40} \equiv 2 \cdot 16^{20} \equiv 2 \cdot 5^{20} \equiv 2 \cdot 25^{10} \equiv 2 \cdot 3^{10} \equiv 2 \cdot 9^5 \equiv 2 \cdot 9 \cdot 9^4 \equiv 2 \cdot 9 \cdot 81^2 \equiv 2 \cdot 9 \cdot 4^2 \equiv 2 \cdot 9 \cdot 16 \equiv 2 \cdot 9 \cdot 5 \equiv 90 \equiv 2 \pmod{11}$.

(c) $2^{2^{81}}$ mod 11 using Fermat's Little Theorem (Theorem 5 from Lecture 5).

Solution: Fermat's little theorem says that $2^{11} \equiv 2 \pmod{11}$, so $2^{10} \equiv 1 \pmod{11}$. Therefore $2^{2^{81}} \equiv 2^{2^{81} \mod{10}} \pmod{11}$: If 2^{81} is represented as 10q + r then $2^{2^{81}} \equiv (2^{10})^q \cdot 2^r \equiv 2^r \pmod{11}$. We can calculate $2^{81} \mod{10}$ using fast exponentiation: $2^{81} \equiv 2 \cdot 2^{80} \equiv 2 \cdot 4^{40} \equiv 2 \cdot 16^{20} \equiv 2 \cdot 6^{20} \equiv 2 \cdot 36^{10} \equiv 2 \cdot 6^{10} \equiv 2 \cdot 36^{10} \equiv 2 \cdot 6^{10} \equiv 2 \cdot$

- 3. Calculate the following numbers.
 - (a) x and y that solve $5x + 7y \equiv 17 \pmod{19}$ and $4x + 11y \equiv 13 \pmod{19}$.

Solution: To get rid of x we multiply the first equation by 4, multiply the second equations by 5 and subtract to obtain $(7 \cdot 4 - 11 \cdot 5)y \equiv 17 \cdot 4 - 13 \cdot 5 \pmod{19}$. We simplify

$$7 \cdot 4 - 11 \cdot 5 = 28 - 55 = -27 \equiv 11$$
 (mod 19),
 $17 \cdot 4 - 13 \cdot 5 \equiv -2 \cdot 4 + 6 \cdot 5 = 22 \equiv 3$ (mod 19).

To solve $11y \equiv 3 \pmod{19}$ we need the multiplicative inverse of 11:

$$E(19,11) = E(11,8)$$

$$= E(8,3)$$

$$= E(3,2)$$

$$= E(2,1)$$

$$= E(1,0),$$

$$19 = 11 + 8$$

$$11 = 8 + 3$$

$$8 = 2 \cdot 3 + 2$$

$$3 = 2 + 1$$

from where

$$1 = 3 - 2$$

$$= 3 - (8 - 2 \cdot 3) = -8 + 3 \cdot 3$$

$$= -8 + 3 \cdot (11 - 8) = 3 \cdot 11 - 4 \cdot 8$$

$$= 3 \cdot 11 - 4 \cdot (19 - 11) = -4 \cdot 19 + 7 \cdot 11$$

so $11^{-1} \mod 19 = 7$. Therefore $y \equiv 7 \cdot 3 = 21 \equiv 2 \pmod{19}$. Plugging into the first equation we get that $5x \equiv 17 - 7 \cdot 2 = 3 \pmod{19}$, from where $x = 3 \cdot 5^{-1} \mod 19$. Now

so $1 = 5 - 4 = 5 - (19 - 3 \cdot 5) = -19 + 4 \cdot 5$, and $5^{-1} \equiv 4 \pmod{19}$. The solution is x = 12, y = 2.

(b) $1^1 + 2^2 + \dots + 99^{99} \mod 3$.

Solution: We can reduce

$$1^{1} + 2^{2} + 3^{3} + 4^{4} + 5^{5} + \dots + 99^{99} \equiv 1^{1} + (-1)^{2} + 0^{3} + 1^{4} + (-1)^{5} + 0^{6} + \dots + 0^{99} \pmod{3}$$

This expression has 33 values of the form 0^n all of which equal zero and 33 values of the form 1^n all of which equal one so their sum modulo 3 is congruent to zero. What remains is

$$(-1)^2 + (-1)^5 + \dots + (-1)^{98} \pmod{3}$$

Since the powers of -1 alternate between even and odd, this expression is congruent to

$$1 + (-1) + 1 + (-1) + \dots + 1 \pmod{3}$$

which evaluates to 1 modulo 3.

(c) $1^{-1} + 2^{-1} + \cdots + 96^{-1} \mod 97$.

Solution: As each number between 1 and 96 has a unique multiplicative inverse modulo 97, each of the numbers $1^{-1}, 2^{-1}, \dots, 96^{-1}$ occurs exactly once in the list $1, 2, \dots, 96$, so

$$1^{-1} + 2^{-1} + \dots + 96^{-1} \equiv 1 + 2 + \dots + 96 = \frac{96 \cdot 97}{2} = 48 \cdot 97 \equiv 49 \cdot 0 = 0 \pmod{97}.$$

(d) (Optional) 42! mod 43 (*Hint:* Pair up each number with its inverse. You can try 6! mod 7 first.)

Solution: Let's try 6! mod 7 first. We can calculate

$$1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \equiv 1 \cdot 2 \cdot 3 \cdot (-3) \cdot (-2) \cdot (-1) \equiv -(2 \cdot 3)^2 \equiv -1^2 = -1 \equiv 6 \pmod{7}.$$

How can we explain this answer? Let's list the multiplicative inverses of all nonzero remainders mod 7:

Only 1 and 6 are their own inverse. The inverse of every other number is different from itself. In the product $6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6$ we can now group every number apart from 1 and 6 with its inverse to conclude that

$$6! \equiv 1 \cdot (2 \cdot 4) \cdot (3 \cdot 5) \cdot 6 \equiv 1 \cdot 1 \cdot 1 \cdot 6 = 6 \pmod{7}.$$

We can apply the same strategy to calculate 42! mod 43. In the product $1 \cdot 2 \cdots 42$, after pairing up every number with its ineverse modulo 43, what remains is the product of the numbers that are their own inverses. Which are these numbers? If $x \equiv x^{-1} \pmod{43}$ and we multiply both sides by x we obtain that $x^2 \equiv 1$, so $x^2 - 1 \equiv 0$, so $(x - 1)(x + 1) \equiv 0 \pmod{43}$. Therefore 43 must divide (x - 1)(x + 1). As 43 is a prime number it must divide x - 1 or x + 1. It follows that $x \equiv 1$ or $x \equiv -1$ modulo 43, so 1 and $-1 \equiv 42$ are the only two numbers that are their own inverses. We conclude that $42! \equiv 1 \cdot 42 = 42 \pmod{43}$.

- 4. You will investigate the "baby RSA" encryption from Lecture 5. Recall that the public encryption key e and "secret" decryption key d are chosen so that $ed \equiv 1 \pmod{n-1}$ for prime modulus n.
 - (a) Assume n = 29 and d = 11. Show how to choose e to enable decryption.

Solution: e should satisfy the decryption equation $ed \equiv 1 \pmod{n-1}$, which in this case says $11e \equiv 1 \pmod{28}$. So e must be a multiplicative inverse of 11 modulo 28, if one exists. We can try to find one using extended Euclid's algorithm:

$$E(28,11) = E(11,6)$$
 $28 = 2 \cdot 11 + 6$
 $= E(6,5)$ $11 = 6 + 5$
 $= E(5,1)$ $6 = 5 + 1$
 $= E(1,0)$,

from where $1 = 6 - 5 = 6 - (11 - 6) = -11 + 2 \cdot 6 = -11 + 2 \cdot (28 - 2 \cdot 11) = 2 \cdot 28 - 5 \cdot 11$. We can choose $e \equiv -5 \equiv 23 \pmod{28}$.

(b) Calculate the encryption $c = m^e \mod n$ of the message m = 10 and the encryption key e from part (a). Then calculate the decryption $c^d \mod n$.

Solution: Using fast exponentiation (and replacements of big numbers by their additive inverses to keep the calculation manageable) we obtain

$$c = m^{e} = 10^{23} = 10 \cdot 10^{22} \equiv 10 \cdot 100^{11}$$

$$\equiv 10 \cdot 13^{11} = 10 \cdot 13 \cdot 13^{10} = 10 \cdot 13 \cdot 169^{5} \equiv 10 \cdot 13 \cdot 24^{5}$$

$$\equiv 10 \cdot 13 \cdot (-5)^{5} = 10 \cdot 13 \cdot (-5) \cdot (-5)^{4} = 10 \cdot 13 \cdot (-5) \cdot 25^{2}$$

$$\equiv 10 \cdot 13 \cdot (-5) \cdot (-4)^{2} \equiv 10 \cdot 13 \cdot (-5) \cdot 16 \equiv 11 \qquad (\text{mod } 29).$$

To decrypt Bob calculates

$$c^d = 11^{11} = 11 \cdot 11^{10} \equiv 11 \cdot 121^5 \equiv 11 \cdot 5^5 = 11 \cdot 5 \cdot 5^4 = 11 \cdot 5 \cdot 25^2 \equiv 11 \cdot 5 \cdot (-4)^2 = 11 \cdot 5 \cdot 16 \equiv 10 \pmod{29}.$$

As expected, c^d recovers the message m.

(c) Now suppose Eve observes the ciphertext c = 33 that Alice sent to Bob using modulus n = 37 and encryption key e = 7. How can Eve recover the message m without knowing d?

Solution: Eve can determine Bob's secret key by solving the equation $ed \equiv 1 \pmod{n-1}$, namely $7d \equiv 1 \pmod{36}$. She runs extended GCD to find

$$E(36,7) = E(7,1) = E(1,0),$$
 36 = 5 · 7 + 1

so $1 = 36 - 5 \cdot 7$ and $d \equiv -5 \equiv 31 \pmod{36}$. Eve can now decrypt c by calculating

$$c^{d} = 33^{31} \equiv (-4)^{31} \equiv (-4) \cdot 16^{15} \equiv (-4) \cdot 16 \cdot 16^{14}$$

$$\equiv (-4) \cdot 16 \cdot 256^{7} \equiv (-4) \cdot 16 \cdot (-3)^{7} \equiv (-4) \cdot 16 \cdot (-3) \cdot (-3)^{6}$$

$$\equiv (-4) \cdot 16 \cdot (-3) \cdot 9^{3} \equiv (-4) \cdot 16 \cdot (-3) \cdot 9 \cdot 81$$

$$\equiv 4 \cdot 16 \cdot 3 \cdot 9 \cdot 7 \equiv 8$$
 (mod 37).