CSI 2101 B/C: Discrete Structures Homework 5 Solutions
University of Ottawa, Winter 2024

1. Calculate the following numbers.
(a) 98 496 + 94 4+ 92 4 90 mod 100
Solution: We can calculate it directly as 470 mod 100 = 70, or using the rules of modular arithmetic,
984+96+94+92+90=-2-4-6—-8-10=—-(24+4+6+8+10)=—-30=70 (mod 100).
(b) 17-23 —2-3 mod 17

Solution: 17-23 -2-3mod 17=0-6 —2-3 (mod 17) = (—6) (mod 17) =11 (mod 17).
(c) 971 mod 23

Solution: We first calculate 97! mod 23 using the extended GCD algorithm:

E(23,9) = E(9,5) 23=2.9+45
= E(5,4) 9=5+4
= E(4,1) 5=4+1
= E(1,0)

so we can write 1 as the following combination of 23 and 9:
1=5-4=5-(9-5)=-9+2-5=-9+2-(23—-2-9)=2-23—-5-9

It follows that 971 = —5 (mod 23) = 18 (mod 23).
(d) 95-41~! mod 97. (97 is a prime number.)

Solution: We first calculate 417! mod 97 using the extended GCD algorithm:

E(97,41) = E(41,15) 97 =2.41+15
= E(15,11) 41=2-15+11
= E(11,4) 15=11+4
= E(4,3) 11=2-4+3
= E(3,1) 4=3+1
= E(1,0) 3=3-140

Now we use the equations in reverse to express 1 as a combination of 97 and 41:

1=4-3
=4—(11-2-4)
=—11+3-4
= —1143-(15—11)
=3-15—-4-11
=3-15—4-(41—2-15)
= —4-41411-15
= —4-41+411-(97 —2-41)
=11-97—26-41

It follows that 417! = —26 (mod 97). Therefore

954171 =95 (—26) = (—2) - (—26) =52 (mod 97).



2. Calculate the following numbers using the suggested method:

(a) 2% mod 11 using iterated multiplication.

Solution: 29 =4.2"=8-20=16-29=5-29=10-2=20-2=9.2 = 1822 =7.22=14.2=3.2=6
(mod 11).

(b) 28 mod 11 using fast exponentiation (the Power algorithm from Lecture 5).

Solution: 281 =2.280=2.410=2.160=2.50=2.2510=2.319=2.9=2.9.91=2.9.81 =
2:9-42=2.9-16=2-9-5=90 =2 (mod 11).

(c) 2%
Solution: Fermat’s little theorem says that 2'! = 2 (mod 11), so 2'© = 1 (mod 11). Therefore 22° =
92" mod 10 (104 11): If 28! is represented as 10q + r then 22° = (210)4.2" = 27 (mod 11).

We can calculate 28! mod 10 using fast exponentiation: 28! = 2.280 =2.440 =2.1620 = 2.6 =
2:3610=2.61=2.36=2-6°=2-6-61=2-6-362=2-6-6=2-6-36=2-6-6 = 72 =2 (mod 10).
Therefore 22 = 22 =4 (mod 11).

" mod 11 using Fermat’s Little Theorem (Theorem 5 from Lecture 5).

3. Calculate the following numbers.
(a) x and y that solve 5z + 7y = 17 (mod 19) and 4z + 11y = 13 (mod 19).

Solution: To get rid of  we multiply the first equation by 4, multiply the second equations by 5 and
subtract to obtain (7-4 —11-5)y =17-4 —13-5 (mod 19). We simplify

7-4-11-5=28—55=—-27=11 (mod 19),
17-4-13-5=-2-446-5=22=3 (mod 19).

To solve 11y = 3 (mod 19) we need the multiplicative inverse of 11:

E(19,11) = E(11,8) 19=11+38
= FE(8,3) 11=8+3
= E(3,2) 8=2-3+2
=FE(2,1) 3=2+1
= E(1,0),

from where
1=3-2

—=3-(8-2-3)=-8+3-3
= —8+43-(11-8)=3-11—-4-8
=3-11-4-(19-11) = —4-1947-11

so 1171 mod 19 = 7. Therefore y = 7-3 = 21 = 2 (mod 19). Plugging into the first equation we get
that 5z = 17— 7-2 =3 (mod 19), from where x = 3 - 5! mod 19. Now

E(19,5) = E(5,4) 19=3-5+4
= E(4,1) 5=4+1
= E(1,0)

s01l=5-4=5-(19-3-5)=—-19+4-5,and 57! =4 (mod 19). The solution is z = 12,y = 2.
(b) 11 +22 4+ ... +99% mod 3.

Solution: We can reduce

' +22 433448457+ 4997 =10 4 (1) 4+ 0° + 11+ (=1)° + 0° + - - + 0% (mod 3)



This expression has 33 values of the form 0™ all of which equal zero and 33 values of the form 1™ all of
which equal one so their sum modulo 3 is congruent to zero. What remains is

(=12 + (=1)°+ -+ (=)™ (mod 3)

Since the powers of —1 alternate between even and odd, this expression is congruent to
1+(-1)+1+(-1)+---+1 (mod 3)

which evaluates to 1 modulo 3.

17427 4o 4+ 967! mod 97.

Solution: As each number between 1 and 96 has a unique multiplicative inverse modulo 97, each of
the numbers 175,271, ..., 96! occurs exactly once in the list 1,2,...,96, so

1*1+2*1+-~+96*1z1+2+~-+96:¥:48-97549-0:0 (mod 97).

(Optional) 42! mod 43 (Hint: Pair up each number with its inverse. You can try 6! mod 7 first.)

Solution: Let’s try 6! mod 7 first. We can calculate
1-2:3-4-5-6=1-2-3-(-3)-(-2) - (-1)=—-(2-3) ’=-1=-1=6 (mod 7).

How can we explain this answer? Let’s list the multiplicative inverses of all nonzero remainders mod7:

z |1 2 3 4 5 6
« 1|1 45 2 3 6

Only 1 and 6 are their own inverse. The inverse of every other number is different from itself. In the
product 6! =1-2-3-4-5-6 we can now group every number apart from 1 and 6 with its inverse to
conclude that

6!=1-(2-4)-(3-5):6=1-1-1-6=6 (mod 7).

We can apply the same strategy to calculate 42! mod 43. In the product 1-2--- 42, after pairing up every
number with its ineverse modulo 43, what remains is the product of the numbers that are their own
inverses. Which are these numbers? If z = 27! (mod 43) and we multiply both sides by x we obtain
that 22 =1,s0 22 =1 =0, 50 (z — 1)(x + 1) = 0 (mod 43). Therefore 43 must divide (z — 1)(x + 1).
As 43 is a prime number it must divide x — 1 or x + 1. It follows that x = 1 or x = —1 modulo 43, so 1
and —1 = 42 are the only two numbers that are their own inverses. We conclude that 42! = 1-42 = 42
(mod 43).

4. You will investigate the “baby RSA” encryption from Lecture 5. Recall that the public encryption key e

and °

(a)

‘secret” decryption key d are chosen so that ed =1 (mod n — 1) for prime modulus n.
Assume n =29 and d = 11. Show how to choose e to enable decryption.

Solution: e should satisfy the decryption equation ed =1 (mod n— 1), which in this case says 1le = 1
(mod 28). So e must be a multiplicative inverse of 11 modulo 28, if one exists. We can try to find one
using extended Euclid’s algorithm:

E(28,11) = E(11,6) 28=2-11+6
= E(6,5) 11=6+5
= E(5,1) 6=5+1
= E(1,0),

from where 1 =6—-5=6—-(11-6)=—-11+2-6=—-11+2-(28—2-11) =2-28 —5-11. We can
choose e = —5 = 23 (mod 28).



(b)

Calculate the encryption ¢ = m® mod n of the message m = 10 and the encryption key e from part (a).
Then calculate the decryption ¢? mod n.

Solution: Using fast exponentiation (and replacements of big numbers by their additive inverses to
keep the calculation manageable) we obtain

c=mf=10%=10-10* = 10 - 100"
=10-13"1=10-13-13=10-13-169° = 10 - 13 - 24°
=10-13-(=5)°=10-13-(=5)- (=51 =10-13- (=5) - 252
=10-13-(=5)-(-4)*=10-13-(=5)- 16 = 11 (mod 29).

To decrypt Bob calculates
=111 =11-11""=11.1215 = 11-5° = 11-5-5? = 11-5-25> = 11-5-(=4)? = 11-5-16 = 10 (mod 29).

As expected, ¢? recovers the message m.
Now suppose Eve observes the ciphertext ¢ = 33 that Alice sent to Bob using modulus n = 37 and
encryption key e = 7. How can Eve recover the message m without knowing d?

Solution: Eve can determine Bob’s secret key by solving the equation ed = 1 (mod n — 1), namely
7d =1 (mod 36). She runs extended GCD to find

E(36,7) = E(7,1) 36=5-7T+1
= E(1,0),

s01=36—5-7and d=—5=31 (mod 36). Eve can now decrypt ¢ by calculating
¢ =333 = (—4)3 = (—4) - 16" = (-4) - 16 - 16
=(—4)-16-256" = (—4)-16 - (=3)" = (—4) - 16 - (=3) - (=3)°

= (—4)-16-(—3) 93 = (=4) - 16 (=3) - 9-81
=4-16-3-9-7=8 (mod 37).



