1. Find exact closed form expressions for the following sums. Explain how you discovered the expression and prove that it is correct.
(a) $1^{2}+3^{2}+5^{2}+\cdots+(2 n+1)^{2}$.

Solution: Let $S(n)$ be the value of the sum. We guess that $S(n)$ has the form $a n^{3}+b n^{2}+c n+d$ for some unknown a, b, c, d. Plugging in $n=0,1,2,3$ we get

$$
\begin{aligned}
& d=S(0)=1^{2}=1 \\
& a+b+c+d=S(1)=1^{2}+3^{2}=10 \\
& 8 a+4 b+2 c+d=S(2)=1^{2}+3^{2}+5^{2}=35 \\
& 27 a+9 b+3 c+d=S(3)=84 \text {. }
\end{aligned}
$$

Plugging in $d=1$ in the other equations we obtain a system of three linear equations in three unknowns a, b, c. The unique solution is $a=4 / 3, b=4, c=11 / 3$. We now prove by induction that $S(n)$ equals $\frac{4}{3} n^{3}+4 n^{2}+\frac{11}{3} n+1$. As for the inductive step, assuming the formula is true for n, showing that it also holds for $n+1$ amounts to verifying the identity

$$
\frac{4}{3}(n+1)^{3}+4(n+1)^{2}+\frac{11}{3}(n+1)+1=\left(\frac{4}{3} n^{3}+4 n^{2}+\frac{11}{3} n+1\right)+(2(n+1)+1)^{2} .
$$

Alternative solution: $1^{2}+3^{2}+5^{2}+\cdots+(2 n+1)^{2}=A-B$, where

$$
A=1^{2}+2^{2}+\cdots+(2 n+1)^{2}=\frac{1}{3}(2 n+1)^{3}+\frac{1}{2}(2 n+1)^{2}+\frac{1}{6}(2 n+1)
$$

by Theorem 1 from Lecture 7

$$
B=2^{2}+4^{2}+\cdots+(2 n)^{2}=4\left(1^{2}+2^{2}+\cdots+n^{2}\right)=\frac{4}{3} n^{3}+\frac{4}{2} n^{2}+\frac{4}{6} n
$$

by the same theorem. After simplifying the expression $A-B$ we get that

$$
1^{2}+3^{2}+5^{2}+\cdots+(2 n+1)^{2}=\frac{4}{3} n^{3}+4 n^{2}+\frac{11}{3} n+1 .
$$

(b) $3^{n}+3^{n+1}+3^{n+2}+\cdots+3^{2 n}$.

Solution: We can factor out 3^{n} from all terms and use the geometric sum formula to obtain

$$
3^{n}+3^{n+1}+3^{n+2}+\cdots+3^{2 n}=3^{n}\left(1+3+3^{2}+\cdots+3^{n}\right)=3^{n} \cdot \frac{3^{n+1}-1}{2}
$$

Alternative solution: $3^{n}+3^{n+1}+3^{n+2}+\cdots+3^{2 n}$ is the difference $A-B$ of the following two geometric sums

$$
A=1+3+3^{2}+\cdots+3^{2 n}=\frac{3^{2 n+1}-1}{3-1}=\frac{3^{2 n+1}-1}{2}
$$

and

$$
B=1+3+3^{2}+\cdots+3^{n-1}=\frac{3^{n}-1}{3-1}=\frac{3^{n}-1}{2} .
$$

So we have

$$
3^{n}+3^{n+1}+3^{n+2}+\cdots+3^{2 n}=A-B=\frac{3^{2 n+1}-3^{n}}{2}=3^{n} \cdot \frac{3^{n+1}-1}{2}
$$

(c) (Optional) $1 / 2+2 / 2^{2}+3 / 2^{3}+\cdots+n / 2^{n}$.
(Hint: Call this number S. Subtract S from $2 S$ term by term.)
Solution: Call this number S. Then

$$
2 S=1+\frac{2}{2}+\frac{3}{2^{2}}+\cdots+\frac{n}{2^{n-1}} .
$$

If we match the terms of $2 S$ and S with the same denominators and subtract we obtain

$$
\begin{aligned}
2 S-S & =1+\left(\frac{2}{2}-\frac{1}{2}\right)+\left(\frac{3}{2^{2}}-\frac{2}{2^{2}}\right)+\cdots+\left(\frac{n}{2^{n-1}}-\frac{n-1}{2^{n-1}}\right)-\frac{n}{2^{n}} \\
& =1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n-1}}-\frac{n}{2^{n}} .
\end{aligned}
$$

The first n terms form a geometric sum with base $1 / 2$, so

$$
S=2 S-S=\frac{1-(1 / 2)^{n}}{1-1 / 2}-\frac{n}{2^{n}}=2-\frac{n+2}{2^{n}} .
$$

2. Show the following inequalities by using the integral method for approximating sums.
(a) $2 \sqrt{n+1}-2 \leq 1 / \sqrt{1}+1 / \sqrt{2}+\cdots+1 / \sqrt{n} \leq 2 \sqrt{n+1}-1$.
(b) $n^{3} / 3 \leq 1^{2}+2^{2}+\cdots+n^{2} \leq n^{3} / 3+n^{2}$.
(c) $1 \cdot e^{-1^{2}}+2 \cdot e^{-2^{2}}+\cdots+n \cdot e^{-n^{2}} \leq 3 /(2 e)$.

Solution:

(a) We approximate the sum by the integral of the function $f(x)=1 / \sqrt{x}$. The value of the sum from $1 / \sqrt{1}$ to $1 / \sqrt{n}$ equals the area under the first n bars in the following diagram.

The area is at least the integral of the function $f(x)=1 / \sqrt{x}$ from 1 to $n+1$. So, we have

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \geq \int_{1}^{n+1} \frac{1}{\sqrt{x}} d x=\left.2 \sqrt{x}\right|_{1} ^{n+1}=2 \sqrt{n+1}-2
$$

If we subtract the area of the light-shaded rectangles from the sum then the integral becomes an upper bound. The total area of the light-shaded rectangles is $1-1 / \sqrt{n+1}$. Therefore

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}-\left(1-\frac{1}{\sqrt{n+1}}\right) \leq \int_{1}^{n+1} \frac{1}{\sqrt{x}} d x
$$

from where we obtain the upper bound

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \leq 2 \sqrt{n-1}-1-\frac{1}{\sqrt{n+1}} \leq 2 \sqrt{n-1}-1
$$

(b) We approximate the sum by the integral of the function $f(x)=x^{2}$. The sum equals the area under the first n bars in the following diagram.

The area is at least the integral of the function $f(x)=x^{2}$ from 0 to $n+1$, so we have.

$$
1^{2}+2^{2}+3^{2}+\ldots .+n^{2} \geq \int_{0}^{n} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{n}=\frac{n^{3}}{3}
$$

If we subtract the area of the light-shaded rectangles from the sum then the integral becomes an upper bound. The total area of the light-shaded rectangles is n^{2} as for any given n the light-shaded rectangles can be stacked on top of each other to reach height x^{2}. This gives the inequality:

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}-n^{2} \leq \int_{0}^{n} x^{2} d x=\frac{n^{3}}{3} \Rightarrow 1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq \frac{n^{3}}{3}+n^{2} .
$$

(c) We approximate the sum by the integral of the function $x \cdot e^{-x^{2}}$. The sum equals the area under the first n bars in the following diagram. Apart from the first two bars, the others are so short that they are not visible.

The function $x e^{-x^{2}}$ is increasing from $x=0$ up to $x=1 / \sqrt{2}$ and then decreasing when $x>1 / \sqrt{2}$. The sum from the second up to the n-th bar can therefore be upper bounded by the integral of the function from 1 up to n, giving the inequality

$$
1 \cdot e^{-1^{2}}+2 \cdot e^{-2^{2}}+\cdots+n \cdot e^{-n^{2}} \leq 1 \cdot e^{-1^{2}}+\int_{1}^{n} x e^{-x^{2}} d x .
$$

The antiderivative of the function $x e^{-x^{2}}$ is $-\frac{1}{2} e^{-x^{2}}$, so the integral is at most

$$
\int_{1}^{n} x e^{-x^{2}} \leq \int_{1}^{\infty} x e^{-x^{2}}=\frac{1}{2}-\left.x e^{-x^{2}}\right|_{1} ^{\infty}=\frac{1}{2 e}
$$

and so the sum is at most $1 / e+1 / 2 e=3 / 2 e$.
3. Sort the following functions in increasing order of asymptotic growth:

$$
2^{n}, n^{n}, e^{2^{n}}, 2^{e^{n}}, n^{e^{2}}
$$

(For example, if you are given the functions n^{2}, n, and 2^{n}, the sorted list would be $n, n^{2}, 2^{n}$.) Show that for every pair of consecutive functions f, g in your list, f is $o(g)$.

Solution: The sorted list is

$$
n^{e^{2}}, 2^{n}, n^{n}, e^{2^{n}}, 2^{e^{n}}
$$

We now show that for every consecutive pair f, g in the list, $f(n) / g(n) \rightarrow 0$ as $n \rightarrow \infty$.
(a) $n^{e^{2}} / 2^{n}=2^{(\log n) \cdot e^{2}} / 2^{n}=2^{e^{2} \log n-n}=2^{-n\left(1-e^{2}(\log n) / n\right)} \rightarrow 2^{-\infty(1-0)}=0$.
(We used the fact that $\log n=o(n)$, so $(\log n) / n \rightarrow 0$.)
(b) $2^{n} / n^{n}=(2 / n)^{n} \rightarrow 0^{\infty}=0$.
(c) $n^{n} / e^{2^{n}}=e^{(\ln n) \cdot n} / e^{2^{n}}=e^{n \ln n-2^{n}}=e^{-2^{n}\left(1-(n \ln n) / 2^{n}\right)} \rightarrow 2^{-\infty(1-0)}=0$.
(We used the fact that $n \ln n=o\left(2^{n}\right)$, so $(n \ln n) / 2^{n} \rightarrow 0$.)
(d) $e^{2^{n}} / 2^{e^{n}}=2^{(\log e) \cdot 2^{n}} / 2^{e^{n}}=2^{2^{n} \cdot \log e-e^{n}}=2^{-e^{n}\left(1-(2 / e)^{n} \log e\right)} \rightarrow 2^{-\infty(1-0)}=0$.
4. Write each of the following summations S as big-theta of a simple closed-form function f. Prove that S is $O(f)$ and f is $O(S)$.
(a) $n+(n+1)+(n+2)+\cdots+2 n$.

Solution: We can derive an formula for this sum:

$$
n+(n+1)+\cdots+2 n=(1+\cdots+2 n)-(1+\cdots+(n-1))=\frac{2 n(2 n+1)}{2}-\frac{(n-1) n}{2}=\frac{3}{2} n^{2}+\frac{3}{2} n
$$

This is a polynomial in n with leading term n^{2} so it is $\Theta\left(n^{2}\right)$.
Alternative solution: S is a sum of $n+1$ terms, each of which is between n and $2 n$ so

$$
(n+1) \cdot n \leq S \leq(n+1) \cdot 2 n
$$

and so S is $\Theta(n(n+1))$, which is the same as $\Theta\left(n^{2}\right)$.
(b) $\log (n)+\log (n+1)+\cdots+\log (2 n)$.

Solution: There is no closed-form expression for this sum so we have to resort to approximation. This sum S consists of $n+1$ terms each of which is between $\log n$ and $\log (2 n)$ so

$$
(n+1) \log n \leq S \leq(n+1) \log (2 n)
$$

The left hand side tells us that $n \log n$ is $O(S)$. The right hand side tells us that S is $O(n \log n)$ because

$$
(n+1) \log (2 n) \leq(n+n) \log (n \cdot n)=2 n \log n^{2} \leq 4 n \log n
$$

when $n \geq 1$.
(c) $2^{1^{2}}+2^{2^{2}}+\cdots+2^{n^{2}}$. (Hint: Use the geometric sum formula.)

Solution: S is at least as large its term $2^{n^{2}}$, and it is at most as large as the sum of all powers of two between 0 and n^{2}, namely

$$
2^{n^{2}} \leq S \leq 2^{0}+2^{1}+2^{2}+2^{3}+\cdots+2^{n^{2}}=2 \cdot 2^{n^{2}}-1
$$

by the geometric sum formula. As S is sandwiched between $2^{n^{2}}$ and $2 \cdot 2^{n^{2}}$ it must be $\Theta\left(2^{n^{2}}\right)$.

