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University of Ottawa, Winter 2024

1. Find exact closed form expressions for the following sums. Explain how you discovered the expression and
prove that it is correct.

(a) 12 + 32 + 52 + · · ·+ (2n+ 1)2.

Solution: Let S(n) be the value of the sum. We guess that S(n) has the form an3 + bn2 + cn+ d for
some unknown a, b, c, d. Plugging in n = 0, 1, 2, 3 we get

d = S(0) = 12 = 1

a+ b+ c+ d = S(1) = 12 + 32 = 10

8a+ 4b+ 2c+ d = S(2) = 12 + 32 + 52 = 35

27a+ 9b+ 3c+ d = S(3) = 84.

Plugging in d = 1 in the other equations we obtain a system of three linear equations in three unknowns
a, b, c. The unique solution is a = 4/3, b = 4, c = 11/3. We now prove by induction that S(n) equals
4
3n

3 +4n2 + 11
3 n+1. As for the inductive step, assuming the formula is true for n, showing that it also

holds for n+ 1 amounts to verifying the identity

4
3(n+ 1)3 + 4(n+ 1)2 + 11

3 (n+ 1) + 1 =
(
4
3n

3 + 4n2 + 11
3 n+ 1

)
+
(
2(n+ 1) + 1

)2
.

Alternative solution: 12 + 32 + 52 + · · ·+ (2n+ 1)2 = A−B, where

A = 12 + 22 + · · ·+ (2n+ 1)2 = 1
3(2n+ 1)3 + 1

2(2n+ 1)2 + 1
6(2n+ 1)

by Theorem 1 from Lecture 7

B = 22 + 42 + · · ·+ (2n)2 = 4(12 + 22 + · · ·+ n2) = 4
3n

3 + 4
2n

2 + 4
6n

by the same theorem. After simplifying the expression A−B we get that

12 + 32 + 52 + · · ·+ (2n+ 1)2 = 4
3n

3 + 4n2 + 11
3 n+ 1.

(b) 3n + 3n+1 + 3n+2 + · · ·+ 32n.

Solution: We can factor out 3n from all terms and use the geometric sum formula to obtain

3n + 3n+1 + 3n+2 + · · ·+ 32n = 3n(1 + 3 + 32 + · · ·+ 3n) = 3n · 3
n+1 − 1

2
.

Alternative solution: 3n+3n+1+3n+2+· · ·+32n is the difference A−B of the following two geometric
sums

A = 1 + 3 + 32 + · · ·+ 32n =
32n+1 − 1

3− 1
=

32n+1 − 1

2

and

B = 1 + 3 + 32 + · · ·+ 3n−1 =
3n − 1

3− 1
=

3n − 1

2
.

So we have

3n + 3n+1 + 3n+2 + · · ·+ 32n = A−B =
32n+1 − 3n

2
= 3n · 3

n+1 − 1

2
.



(c) (Optional) 1/2 + 2/22 + 3/23 + · · ·+ n/2n.
(Hint: Call this number S. Subtract S from 2S term by term.)

Solution: Call this number S. Then

2S = 1 +
2

2
+

3

22
+ · · ·+ n

2n−1
.

If we match the terms of 2S and S with the same denominators and subtract we obtain

2S − S = 1 +
(2
2
− 1

2

)
+
( 3

22
− 2

22

)
+ · · ·+

( n

2n−1
− n− 1

2n−1

)
− n

2n

= 1 +
1

2
+

1

22
+ · · ·+ 1

2n−1
− n

2n
.

The first n terms form a geometric sum with base 1/2, so

S = 2S − S =
1− (1/2)n

1− 1/2
− n

2n
= 2− n+ 2

2n
.

2. Show the following inequalities by using the integral method for approximating sums.

(a) 2
√
n+ 1− 2 ≤ 1/

√
1 + 1/

√
2 + · · ·+ 1/

√
n ≤ 2

√
n+ 1− 1.

(b) n3/3 ≤ 12 + 22 + · · ·+ n2 ≤ n3/3 + n2.

(c) 1 · e−12 + 2 · e−22 + · · ·+ n · e−n2 ≤ 3/(2e).

Solution:

(a) We approximate the sum by the integral of the function f(x) = 1/
√
x. The value of the sum from 1/

√
1

to 1/
√
n equals the area under the first n bars in the following diagram.

1 2 3 4 5 6
x

1/
√
x

The area is at least the integral of the function f(x) = 1/
√
x from 1 to n+ 1. So, we have

1√
1
+

1√
2
+ · · ·+ 1√

n
≥

∫ n+1

1

1√
x
dx = 2

√
x
∣∣n+1

1
= 2

√
n+ 1− 2.

If we subtract the area of the light-shaded rectangles from the sum then the integral becomes an upper
bound. The total area of the light-shaded rectangles is 1− 1/

√
n+ 1. Therefore

1√
1
+

1√
2
+ · · ·+ 1√

n
−
(
1− 1√

n+ 1

)
≤

∫ n+1

1

1√
x

dx

from where we obtain the upper bound

1√
1
+

1√
2
+ · · ·+ 1√

n
≤ 2

√
n− 1− 1− 1√

n+ 1
≤ 2

√
n− 1− 1.

(b) We approximate the sum by the integral of the function f(x) = x2. The sum equals the area under the
first n bars in the following diagram.



0 1 2 3 4 5 6
x

x2

The area is at least the integral of the function f(x) = x2 from 0 to n+ 1, so we have.

12 + 22 + 32 + ....+ n2 ≥
∫ n

0
x2 dx =

x3

3

∣∣n
0
=

n3

3

If we subtract the area of the light-shaded rectangles from the sum then the integral becomes an upper
bound. The total area of the light-shaded rectangles is n2 as for any given n the light-shaded rectangles
can be stacked on top of each other to reach height x2. This gives the inequality:

12 + 22 + 32 + ...+ n2 − n2 ≤
∫ n

0
x2 dx =

n3

3
⇒ 12 + 22 + 32 + ...+ n2 ≤ n3

3
+ n2.

(c) We approximate the sum by the integral of the function x · e−x2
. The sum equals the area under the

first n bars in the following diagram. Apart from the first two bars, the others are so short that they
are not visible.

0 1 2 3 4 5
6

x

xe−x2

The function xe−x2
is increasing from x = 0 up to x = 1/

√
2 and then decreasing when x > 1/

√
2. The

sum from the second up to the n-th bar can therefore be upper bounded by the integral of the function
from 1 up to n, giving the inequality

1 · e−12 + 2 · e−22 + · · ·+ n · e−n2 ≤ 1 · e−12 +

∫ n

1
xe−x2

dx.

The antiderivative of the function xe−x2
is −1

2e
−x2

, so the integral is at most∫ n

1
xe−x2 ≤

∫ ∞

1
xe−x2

= 1
2 − xe−x2∣∣∞

1
=

1

2e



and so the sum is at most 1/e+ 1/2e = 3/2e.

3. Sort the following functions in increasing order of asymptotic growth:

2n, nn, e2
n
, 2e

n
, ne2 .

(For example, if you are given the functions n2, n, and 2n, the sorted list would be n, n2, 2n.) Show that for
every pair of consecutive functions f, g in your list, f is o(g).

Solution: The sorted list is
ne2 , 2n, nn, e2

n
, 2e

n
.

We now show that for every consecutive pair f, g in the list, f(n)/g(n) → 0 as n → ∞.

(a) ne2/2n = 2(logn)·e
2
/2n = 2e

2 logn−n = 2−n(1−e2(logn)/n) → 2−∞(1−0) = 0.
(We used the fact that log n = o(n), so (log n)/n → 0.)

(b) 2n/nn = (2/n)n → 0∞ = 0.

(c) nn/e2
n
= e(lnn)·n/e2

n
= en lnn−2n = e−2n(1−(n lnn)/2n) → 2−∞(1−0) = 0.

(We used the fact that n lnn = o(2n), so (n lnn)/2n → 0.)

(d) e2
n
/2e

n
= 2(log e)·2

n
/2e

n
= 22

n·log e−en = 2−en(1−(2/e)n log e) → 2−∞(1−0) = 0.

4. Write each of the following summations S as big-theta of a simple closed-form function f . Prove that S is
O(f) and f is O(S).

(a) n+ (n+ 1) + (n+ 2) + · · ·+ 2n.

Solution: We can derive an formula for this sum:

n+ (n+ 1) + · · ·+ 2n = (1 + · · ·+ 2n)− (1 + · · ·+ (n− 1)) =
2n(2n+ 1)

2
− (n− 1)n

2
= 3

2n
2 + 3

2n.

This is a polynomial in n with leading term n2 so it is Θ(n2).

Alternative solution: S is a sum of n+ 1 terms, each of which is between n and 2n so

(n+ 1) · n ≤ S ≤ (n+ 1) · 2n

and so S is Θ(n(n+ 1)), which is the same as Θ(n2).

(b) log(n) + log(n+ 1) + · · ·+ log(2n).

Solution: There is no closed-form expression for this sum so we have to resort to approximation. This
sum S consists of n+ 1 terms each of which is between log n and log(2n) so

(n+ 1) log n ≤ S ≤ (n+ 1) log(2n).

The left hand side tells us that n log n is O(S). The right hand side tells us that S is O(n log n) because

(n+ 1) log(2n) ≤ (n+ n) log(n · n) = 2n log n2 ≤ 4n log n.

when n ≥ 1.

(c) 21
2
+ 22

2
+ · · ·+ 2n

2
. (Hint: Use the geometric sum formula.)

Solution: S is at least as large its term 2n
2
, and it is at most as large as the sum of all powers of two

between 0 and n2, namely

2n
2 ≤ S ≤ 20 + 21 + 22 + 23 + · · ·+ 2n

2
= 2 · 2n2 − 1

by the geometric sum formula. As S is sandwiched between 2n
2
and 2 · 2n2

it must be Θ(2n
2
).


