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1. Find exact closed-form solutions to the following recurrences in two ways (by unwinding and by homoge-
nization), and verify the result by induction.

(a) f(n) = 4f(n− 1) + 9, f(0) = 1.

Solution:

• Unwinding: We try to guess a solution by unwinding the formula for f(n):

f(n) = 9 + 4f(n− 1)

= 9 + 4 · 9 + 42 · f(n− 2)

= 9 + 4 · 9 + 42 · 9 + 43 · f(n− 3)

Continuing in this manner suggests the guess

f(n) = 9 + 4 · 9 + 42 · 9 + · · ·+ 4n−1 · 9 + 4n · f(0).

Since f(0) = 1, we can write

f(n) = 9 + 4 · 9 + 42 · 9 + · · ·+ 4n−1 · 9 + 4n

= 9 · 4
n − 1

4− 1
+ 4n

= 3(4n − 1) + 4n = 4n+1 − 3.

• Homogenization: By adding 3 to both side, we get

f(n) + 3 = 4f(n− 1) + 12 = 4(f(n− 1) + 3).

The function g(n) = f(n) + 3 then satisfies the recurrence g(n) = 4g(n− 1) with initial condition
g(0) = 4. This gives us g(n) = 4n+1. Then f(n) = g(n)− 3 = 4n+1 − 3.

• Verification by induction: We prove our guess is correct by induction on n. When n = 0, both f(0)
and 4n+1 − 3 are 1. Now assume f(n) = 4n+1 − 3 for some n. Then

f(n+ 1) = 4f(n) + 9 = 4(4n+1 − 3) + 9 = 4n+2 − 12 + 9 = 4n+2 − 3

as it should be.

(b) f(n) = 3
5f(n− 1) + 4

5 , f(0) = 0.

Solution:

• Unwinding: We try to guess a solution by unwinding the formula for f(n):
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Continuing in this manner suggests the guess
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Since f(0) = 0, we can write
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• Homogenization: By subtracting 2 from both side, we have

f(n)− 2 =
3

5
f(n− 1)− 6

5
=

3

5
(f(n− 1)− 2).

The function g(n) = f(n)− 2 then satisfies the recurrence g(n) = 3
5g(n− 1) with initial condition

g(0) = −2. This gives us g(n) = −2(35)
n. Then f(n) = g(n) + 2 = 2− 2(35)

n.

• Verification by induction: We prove our guess is correct by induction on n. When n = 0, both f(0)
and 2− 2

(
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are 0. Now assume f(n) = 2− 2
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for some n. Then
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as it should be.

(c) f(n) = 3f(n/2) + n, f(1) = 1, where n is a power of 2.

Solution:

• Unwinding: We try to guess a solution by unwinding the formula for f(n):
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(n
2

)
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+
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Continuing in this manner for log n steps suggests the guess

f(n) = 3lognf(1) + 3logn · n

2logn
+ 3logn−1 · n

2logn−1
+ · · ·+ n.

By f(1) = 1 and geometric sum formula, we can write

f(n) = 3logn +
(3/2)logn − 1

(3/2)− 1
· n = 3 · 3logn − 2n = 3 · nlog 3 − 2n.

• Homogenization: We try the homogenization f(n) = f ′(n) + an. Then f ′(n) + an must equal
3(f ′(n/2) + an/2) + n, so f ′(n) − 3f ′(n/2) = (a/2 + 1)n. This is a homogeneous recurrence
f ′(n) = 3f ′(n/2) when a = −2. The initial condition is then f ′(1) = f(1) + 2 = 3. f ′(n) solves to
f ′(n) = 3f ′(n/2) = 32f ′(n/22) = · · · = 3lognf ′(1) = 3 · 3logn = 3 · nlog 3. Then f(n) = f ′(n)− 2n =
3 · nlog 3 − 2n.

• Verification by induction: If we write m = log n, then f(2m) = 3m+1 − 2m+1. We prove this is
correct by induction on m. When m = 0, both f(2m) and 3m+1 − 2m+1 are one. Now assume
f(2m) = 3m+1 − 2m+1 for some m. Then

f(2m+1) = 3f(2m) + 2m+1 = 3 · (3m+1 − 2m+1) + 2m+1 = 3m+2 − 2m+2

as it should be.



2. Find exact closed-form solutions to the following recurrences.

(a) f(n) = 8f(n− 1)− 15f(n− 2), f(0) = 0, f(1) = 1

Solution: This is a homogeneous linear recurrence, so we guess a solution of the form f(n) = xn for
some nonzero x. If our guess is correct, xn must equal 8xn−1−15xn−2 for all n, from where x2 = 8x−15.
This quadratic equation has the two solutions x1 = 3 and x2 = 5. Any linear combination of xn1 and
xn2 also satisfies the recurrence. We look for a a linear combination f(n) = sxn1 + txn2 that satisfies the
additional requirements f(0) = 0 and f(1) = 1:

0 = f(0) = s+ t

1 = f(1) = sx1 + tx2 = 3s+ 5t.

The unique solution to this system is s = −1/2 and t = 1/2. Therefore

f(n) = −1

2
· 3n +

1

2
· 5n =

5n − 3n

2

is the solution to our recurrence.

(b) f(n) = f(n− 1) + f(n− 2) + 1, f(0) = 0, f(1) = 1
(Hint: Try homogenizing with f(n) = g(n) + c for some constant c.)

Solution: We first homogenize the recurrence. By adding one to both sides we can write

f(n) + 1 = (f(n− 1) + 1) + (f(n− 2) + 1).

The function g(n) = f(n) + 1 then satisfies the recurrence g(n) = g(n − 1) + g(n − 2) with initial
conditions g(0) = 1 and g(1) = 2. This is the same as the recurrence from Section 4 of Lecture 7,
but with different initial conditions. We can solve it using the same method. Alternatively we can
reason like this. If we define g(−1) = 1 then the recurrence is still satisfied for all n ≥ 1. Then the
function h(n) = g(n− 1) satisfies the same recurrence but with initial conditions h(0) = g(−1) = 1 and
h(1) = g(0) = 1. This is exactly the same as the recurrence in Lecture 7, so
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1√
5
·
(1 +√

5

2
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,

from where

g(n) = h(n− 1) =
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5
·
(1 +√
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2
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and finally

f(n) = g(n)− 1 =
1√
5
·
(1 +√

5

2

)n+2
− 1√

5
·
(1 +√

5

2

)n+2
− 1.

3. Recall that a saddle in a table of numbers is an entry that is largest in its column and smallest in its row.
In Lecture 2 we showed that every table can have at most one saddle. Here is an algorithm for finding it (if
it exists):

Input: A n× n table T . Assume n is a power of two and all entries of T are distinct.
Algorithm Saddle(T ):

If n = 1, output the (unique) entry in T .
Otherwise,

Recursively run Saddle(Ti) on each of the four quadrants T1, T2, T3, T4 of T .
Let si be the output of Saddle(Ti).
Test if si is a saddle of T by comparing it to

all numbers in its row and column except those in Ti.
If one of s1, s2, s3, or s4 passes the test, output it.



(a) Show a sample run of Saddle on the following input T :

12 2 5 10

16 7 13 4

15 8 14 9

6 1 11 3

Solution: The algorithm recursively splits the instance into four quadrants

T1 =
12 2
16 7

T2 =
5 10
13 4

T3 =
15 8
6 1

T4 =
14 9
11 3

.

In the next level of recursion each of T1, T2, T3, T4 is split into its four entries and each of them is output
as a candidate saddle. For example, 12, 2, 16, 7 are all considered as candidate saddles in T1 and
compared to the other entry in their row and column. Only 7 survives and is output as the saddle of
T1. Similarly, 8 and 9 are output as the saddles of T3 and T4, respectively. T2 does not have a saddle
so the recursive call Saddle(T2) does not produce one. At this stage the candidate saddles in the four
quadrants are

12 2 5 10

16 7 13 4

15 8 14 9

6 1 11 3

Now each candidate saddle is compared to the other number in its row and column except the ones in
the table it is already in. Thus 7 is compared to 8, 1, 13, and 4, and so on. 7 does not survive because
it is larger than 4 (and smaller than 8). Similarly 9 does not survive because it is smaller than 10. Only
8 survives and is the output produced by Saddle(T ).

(b) Let C(n) be the worst-case number of comparisons Saddle performs on an n× n input. Explain why

C(n) ≤ 4C(n/2) + 4n. (1)

Solution: The number of comparisons C(n) on a n × n table equals is the number of comparisons
made by the four recursive calls, each of which is at most C(n/2), plus the extra comparisons done in
the test step. In general there can be as many as four candidate saddles coming in from the recursion.
Each of them is compared to at most n/2 numbers in its row and n/2 numbers in its column. (Not all
these comparisions are necessarily distinct; for example in part (a) 7 is compared to 8 twice, separately
when each is considered as a possible candidate saddle.) So the number of extra comparisons is at most
4 · (n/2 + n/2) = 4n.

(c) Apply Theorem 6 from Lecture 7 to calculate the big-Oh asymptotic growth of C(n).

Solution: We instantiate the Master Theorem with a = 4, b = 2, and g(n) = 4n. Then c = logb a = 2,
and g(n) = O(n) = O(nc−ε) with ε = 1. So we have C(n) = O(nc) = O(n2).

(d) Obtain an exact formula for C(n) assuming the inequality in (??) is an equality. Argue that your
solution is an upper bound on the number of comparisons performed by Saddle.

Solution: We solve the recurrence C(n) = 4C(n/2)+4n with C(1) = 0. The solution to (??) can only
be smaller by strong induction on n. We unwind the recurrence to obtain

C(n) = 4C(n/2) + 4n

= 4(4C(n/22) + 4(n/2)) + 4n = 42C(n/22) + 42n/2 + 4n

= 42(4C(n/23) + 4(n/22)) + 42n/2 + 4n = 43C(n/23) + 43n/22 + 42n/2 + 4n

= · · ·
= 4lognC(1) + 4 · (n+ 2n+ 22n+ · · ·+ 2logn−1n)

= 4(2logn − 1)n

= 4n(n− 1).



Assuming the equality that C(n) = 4C(n/2) + 4n then C(n) = Θ(n2) by the Master Theorem, Lecture
7. At the return of each recursive call to Saddle, for an input of size larger than n = 1, there is between
0 and 4 candidate saddles to consider. Hence the expression for C(n) is a worst case scenario when at
the return of each recursive call, the relevant comparisons for 4 saddles are made, and so the expression
for C(n) is an upper bound.

4. DNA (Deoxyribonucleic acid) is a molecule that carries the genetic instructions for all known organisms and
many viruses. It consists of a chain of bases. In DNA chain, there are four types of bases: A, C, G, T. For
example, a DNA chain of length 10 can be ACGTACGTAT.

(a) Let g(n) be the number of configurations of a DNA chain of length n in which the pairs TT and TG
never appear. Write a recurrence for g(n). (Hint: Is the first base a T?)

Solution: A sequence of length n will either start with a T or not. If it starts with a T, then the next
base must be either C or A. Then, any valid sequence of length n − 2 can be appended. Thus there
are 2 · g(n− 2) valid sequences of length n that start with T. If we do not start with T, then we have
3 choices and can append any valid sequence of length n − 1. Thus there are 3 · g(n − 1) choices that
do not start with T. Together we have the recurrence: g(n) = 3g(n− 1)+ 2g(n− 2). As base cases, we
have g(1) = 4 and g(2) = 14.

(b) Solve the recurrence from part (a).

Solution: This is a homogeneous linear recurrence, so we guess a solution of the form g(n) = xn for
some nonzero x. If our guess is correct, xn must equal 3xn−1+2xn−2 for all n, from where x2 = 3x+2.

This quadratic equation has the two solutions x1 = 3+
√
17

2 and x2 = 3−
√
17

2 . Any linear combination
of xn1 and xn2 also satisfies the recurrence. We look for a a linear combination g(n) = sxn1 + txn2 that
satisfies the additional requirements g(0) = 1 and g(1) = 4:

1 = g(0) = s+ t

4 = g(1) = sx1 + tx2 = s · 3 +
√
17

2
+ t · 3−

√
17

2
.

The unique solution to this system is s = 17+5
√
17

34 and t = 17−5
√
17

34 . Therefore
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√
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34

(
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√
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2

)n

+
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√
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34

(
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√
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2

)n

is the solution to our recurrence.

(c) Which one of the alternatives g(n) = o(3n), g(n) = Θ(3n), or 3n = o(g(n)) is correct?

Solution: The last one. (3−
√
17)/2 is about −0.562 so

(
3−

√
17

2

)n
tends to 0 as n gets large. Therefore

g(n) is Θ
((

3+
√
17

2

)n)
. As (3 +

√
17)/2 > (3 +

√
9)/2 = 3, 3n is o(

((
3+

√
17

2

)n)
so it must be o(g(n))

as well.

5. (Optional) You want to move the Towers of Hanoi, but now you have four poles. The rules are the same:
n disks are initially stacked by size and the objective is to move them to another pole one by one so that at
no point does a larger disk cover a smaller one.

Consider the following strategy: If n ≤ 10, ignore one of the poles and apply the solution from class for three
poles. If n > 10, recursively move the top n− 10 disks to the second pole, stack up the bottom 10 disks onto
the last pole using the other three poles only, and then recursively move the n− 10 remaining disks from the
second pole to the last pole.

Let T (n) be the number of steps that it takes to move the whole stack of n disks.



(a) Write a recurrence for T (n). Explain why your recurrence is correct.

Solution: The number of moves the strategy makes for n disks and 4 poles equals twice the number
of moves for n− 10 disks and 4 poles, plus the number of moves for 10 disks and 3 poles which equals
210 − 1 = 1023. Therefore the recurrence is

T (n) = 2T (n− 10) + 1023

for n > 10 and T (n) = O(1) for n ≤ 10.

(b) Show that the recurrence from part (a) satisfies T (n) = O(2n/10).

Solution: For n sufficiently large,

T (n) = 2T (n− 10) + 1023 = 22T (n− 2 · 10) + 2 · 1023 + 1023 = 23T (n− 3 · 10) + (1 + 2 + 22)1023.

After ⌊n/10⌋ steps, we get

T (n) = 2⌊n/10⌋T (n− ⌊n/10⌋ · 10) + (1 + 2 + · · ·+ 2⌊n/10⌋) · 1023 ≤ 2n/10T (k) + (2⌊n/10⌋+1 − 1) · 1023

for some k between 1 and 10. The last expression is O(2n/10).

(c) Can you come up with a different strategy in which 2O(
√
n) moves are sufficient?

Solution: When n ≥ 2, recursively move the top n − ⌊
√
n⌋ disks to the second pole, stack up the

bottom ⌈
√
n⌉ disks onto the last pole using the other three poles only, and then recursively move the

n− ⌈
√
n⌉ remaining disks from the second pole to the last pole. This gives the recurrence

T (n) = 2T (n− ⌈
√
n⌉) + 2⌈

√
n⌉ − 1

for the number of moves. Since T is an increasing function for every k in the range n/2 ≤ k ≤ n, we
can write

T (k) = 2T (k − ⌈
√
k⌉) + 2⌈

√
k⌉ − 1 ≤ 2T (k − ⌈

√
n/2⌉) + 2⌈

√
n⌉.

Therefore for n sufficiently large

T (n) ≤ 2T (n− ⌈
√

n/2⌉) + 2⌈
√
n⌉

≤ 22T (n− 2⌈
√
n/2⌉) + (1 + 2)2⌈

√
n⌉

≤ 23T (n− 3⌈
√
n/2⌉) + (1 + 2 + 22)2⌈

√
n⌉.

Continuing for just enough steps t so that the argument of T (·) drops below n/2, we get that

T (n) ≤ 2tT (⌊n/2⌋) + (2t − 1)2⌈
√
n⌉

The value of t can be at most 2⌈
√

n/2⌉, so

T (n) ≤ 2⌈
√

n/2⌉T (⌊n/2⌋) + 2⌈
√

n/2⌉ · 2⌈
√
n⌉ ≤ 2⌈

√
n⌉T (⌊n/2⌋) + 22⌈

√
n⌉.

We can derive the inequality

T (n) + 1 ≤ 2⌈
√
n⌉T (⌊n/2⌋) + 22⌈

√
n⌉ + 1 ≤ 2 · 22

√
n(T (⌊n/2⌋) + 1).

Iterating this formula down to n = 2, we get that

T (n) ≤ 2 · 22
√
n · 22

√
n/2 · · · 22 ≤ 2 · 22

√
n(1+1/

√
2+1/

√
2
2
+... ) = 2O(

√
n).


