
CSI 2101: Discrete Structures Lecture 1
University of Ottawa, Winter 2024

Bob manages the distribution of skis at rental stations in Gatineau park. His job is to ensure enough
skis are available for customers at the five stations A, B, C, D, and E along the trail. At the end of the
day one the inventories stand like this:

location stock

A 3 skis
B 1 ski
C 7 skis
D 2 skis
E 1 skis

In anticipation of next days’s demand Bob wants the following availability:

location request

A 2 skis
B 4 skis
C 1 ski
D 1 ski
E 6 skis

Carrying skis in the snow is demanding work. A porter’s rate is one dollar for every ski carried between
consecutive stations. If he were to carry, for example, two skis from station A to station C, the porter
would charge four dollars. To minimize cost, Bob hires a consultant Jason who shouts this plan to the
porter:

Move 5 skis from C to E. Then take one ski from A, C, and D each and move all those to B.

Jason’s plan involves carrying two skis for one hop and six skis for two hops for a total cost 2+ 6× 2 = 14
dollars. You take out a piece of paper and make a quick sketch of it:

A B C D E

3 1 7 2 1

2 4 1 1 6

51 1 1

You notice that the arrows from C to B and from D to E cross. This is clearly wasteful. Why not uncross
them?

A B C D E

3 1 7 2 1

2 4 1 1 6

41 2 1

1

Indeed, now 4 pumpkins are moved by a single hop and another 4 are moved by 2 hops for a total cost of
4+ 4× 2 = 12 dollars! You show your scheme to Bob, who is happy that you saved him two dollars. Then
he asks you to save him another two by coming up with an even better plan!

You scratch your head for a minute but come up with nothing. How can you be sure that this is the
best you can do?

Proofs

Much of the mathematics you study in school is about calculating things. In first grade you learn how
to add single digit numbers. Later you move on to larger numbers and more complicated calculations,
like multiplications, divisions, and square roots. In high school, you may be calculating roots of quadratic
equations, sines and cosines, and doing some complex number algebra. At university, you take derivatives
and compute integrals, solve systems of linear equations and differential equations.

To be a good engineer you certainly need to be good at calculating. But calculating is not enough.
You will need to learn to set up and solve problems in a confident manner.

A mediocre engineer like Jason might be satisfied with a solution that “feels” good to him. A great
engineer wants more: She wants be confident that her solution is the best one possible. For this, calculations
are not particularly helpful. She needs to reason things out.

After thinking for some time, you are quite sure that it is impossible to spend less than 12 dollars on
the pumpkins. But how do you explain this to Bob?

Here is how. Imagine moving skis from left to right. At station A, there are three pumpkins in the
morning and we need to end up with two in the afternoon; so no matter how things are moved, at least
one pumpkin will have to be shuttled out of A:

A B C D E

3 1 7 2 1

2 4 1 1 6

1

Next, if you add the number of pumpkins at A and B Streets, there are 4 available but 6 are needed.
No matter how the pumpkins are carried, at least two will have to be brought from the South of 14th
Street:

A B C D E

3 1 7 2 1

2 4 1 1 6

1 2

Continuing your reasoning in this way, you come up with the following picture:

2

A B C D E

3 1 7 2 1

2 4 1 1 6

1 4 52

It is now clear that Bob must spend at least one dollar moving pumpkins between A and B, at least 2
dollars between B and C, and so on. All expenses must therefore amount to at least 1 + 2 + 4 + 5 = 12
dollars. Your solution is indeed the best possible.

This is an example of a proof: A deduction of an interesting proposition (“In any given scheme Bob’s
cost is at least 12 dollars”) by a sequence of clear, rigorous logical deductions. The ability to come up with
proofs and present them clearly is important. In the next few weeks, we will talk about various types of
proofs in some detail.

1 Propositions

A proposition is a statement that is either true or false. For example, “1 + 1 = 2” is a true proposition,
and “Thursday is the day after Tuesday” is a false proposition.

The business of logic is to determine the truth-value of a given proposition with certainty. In these
examples the truth of the first one and the falsehood of the second are self-evident. Shortly we will see
examples of propositions whose truth-value is not so easy to determine. The only reliable way we have
for dealing with them is the axiomatic method : Start with the propositions that are obvjously true (the
axioms) and apply rules of logic to figure out the truth-value of any proposition of interest.

We’ll talk about rules of logic and proofs in the next lecture. First we need to learn how to formulate
interesting propositions that have clear unambiguous meaning. There are two tools for building complex
propositions out of simple ones: Logical operators and quantifiers.

Logical operators and truth tables

We can modify and combine propositions using operators such as and, or, and not. For example, the
proposition

not (1 + 1 = 3)

is true, while the proposition
(1 + 1 = 2) and (1 + 1 = 3)

is false.
In general, given a proposition P , we can build the proposition not P . The proposition not P is false

when P is true, and true when P is false. We can describe the effect of not compactly in a truth table:

P not P

T F
F T

Given two propositions P and Q, we can form the compound propositions P and Q, P or Q. Here are
their truth tables:

P Q P and Q

T T T
T F F
F T F
F F F

3

P Q P or Q

T T T
T F T
F T T
F F F

This is a different from the way the word “or” is used in common English. When you see a dinner set
in a restaurant that comes with “beer or wine”, it is usually understood that you cannot have both. In
contrast, in mathematics P or Q is also true when P is true and Q is true.

The English meaning of “You can have beer or wine with your dinner” is captured by the operator
xor, which stands for “exclusive or”:

P Q P xor Q

T T F
T F T
F T T
F F F

We say P and Q are logically equivalent if they take the same truth value. The operator iff (short for
“if and only if”) describes logical equivalence:

P Q P iff Q

T T T
T F F
F T F
F F T

We can go on, but in fact every compound proposition is logically equivalent to a propositional formula
that uses only the operators and, or, and not. For example

P xor Q is logically equivalent to ((not P) and Q) or (P and (not Q)).

One way to verify this is to compute the truth table of the second formula and compare it to the truth
table for xor:

P Q not P (not P) and Q not Q P and (not Q) ((not P) and Q)
or (P and (not Q))

T T F F F F F
T F F F T T T
F T T T F F T
F F T F T F F

2 Quantifiers

A predicate is a proposition whose truth may depend on one or more free variables. For example, “n is
even” is a predicate (about integers) with free variable n. It is true when n = 2 and false when n = 3. You
can try to visualize this predicate by an infinite “table” of truth-values indexed by integers:

n · · · −2 −1 0 1 2 · · ·
n is even · · · T F T F T · · ·

The predicate n = 2×m has two free variables. It is true when n = 4,m = 2 and false when n = 2,m = 4.
This one can be visualized by a two-dimensional “table” whose rows are indexed by n and whose columns
are indexed by m:

4

n\m · · · −2 −1 0 1 2 · · ·
...

. . .
...

...
...

...
... . .

.

−2 . . . F T F F F . . .
−1 . . . F F F F F . . .
0 . . . F F T F F . . .
1 . . . F F F F F . . .
2 . . . F F F T F . . .
... . .

. ...
...

...
...

...
. . .

The predicate “n = 2×m” is true when n = 2,m = 1 and false when n = 1,m = 2.
A predicate can be turned into a proposition by quantifying over the free variables. For example, the

statement

For all n, n is even

is a proposition. This proposition is false because when n = 1, “n is even” becomes false. On the other
hand, the proposition

There exists an n such that n is even

is true because when n = 2, “n is even” becomes true.
A proposition like “10 is even” can itself be written using quantifiers: A number is even if it equals

twice some other number, namely

There exists an m such that 10 = 2×m.

This proposition is true because 10 = 2×5. The proposition “For all numbers n, n is even” can be written
as

For all n there exists an m such that n = 2×m

As we saw, this one is false.
I find the tabular visualization helpful in reasoning about quantified propositions with two (or more)

variables. Let us look at a specific row n of the table. For the inner predicate “there exists an m such
that n = 2 ×m” to be true, this row must contain a T somewhere. For the proposition itself to be true,
a T must appear in every row. This fails for the proposition of interest because no T appears in the row
indexed by n = 1, say.

It should come as no surprise that both the names of the quantified variables and the order in which
they appear matters in quantified predicates. Do not be careless with them! For example, if we change
the role of m and n, we obtain the proposition

For all m there exists an n such that n = 2×m

which is true. (The question is now whether every column of the table has a T somewhere, and it does.)
If we now change the order of the quantifiers in the last statement, we obtain

There exists an n such that for all m, n = 2×m

which is false again. (We are now asking if there is a row in the table that has Ts in all slots.)

5

The implies operator

The implies operator, which we also write as −→, captures the meaning of the English conditional “If P
then Q”. It has the following truth table:

P Q P −→ Q

T T T
T F F
F T T
F F T

So the proposition

1 + 1 = 2 −→ 1 + 1 = 3

is false. On the other hand, the propositions

1 + 1 = 3 −→ 1 + 1 = 2
1 + 1 = 3 −→ 1 + 1 = 4

are both true. This may sound a bit strange at first, but it makes perfect sense: If 1 + 1 = 3, which is
clearly false, then anything goes. A false proposition implies any other proposition.

The implies operator comes in handy when reasoning about predicates. For example, let’s take the
following proposition about integer numbers:

(1) Every even number is the sum of two odd numbers.

Let’s give the number a name; let’s call it n. Proposition (1) says that if n happens to be even, then n
must be the sum of two odd numbers:

(2) For every n, (n is even) −→ (n is the sum of two odd numbers)

Let’s give the predicate “(n is even) −→ (n is the sum of two odd numbers)” a name: We’ll call it P (n).
Then P (0) is true because 0 is even and it is the sum of two odd numbers (1 and −1). P (1) is true because
1 is not even; P (8) is true because 8 is even and it is the sum of 3 and 5. It looks like this proposition may
be true.

Using the definitions of “even number” and “odd number”, we can further expand proposition (2) like
this:

(3) For every n, (There exists an m such that n = 2×m) −→ (There exist a and b such that
(n = a + b) and (there exists a c such that a = 2 × c + 1) and (there exists a d such that
b = 2× d+ 1)).

Propositions (1), (2), and (3) are different formulations of the same statement. Which is the best one to
use? It all depends on context. For example, if you are not sure whether the proposition is true and want
to ask your teacher about it, you should be as concise as possible and use formulation (1): “Is it true
that every even number is the sum of two odd numbers?” If you want to reason about the truth of the
proposition by trying out different cases as we just did, then formulation (2) is more suitable. Formulation
(3) is too detailed for most purposes and would be rarely used in practice. Such formulations might come
up, for instance, in automated theorem proving.

You will need to become comfortable at translating between formulations of the same proposition at
different levels of detail inside your head. Practice helps.

6

https://en.wikipedia.org/wiki/Automated_theorem_proving

From an English sentence to a proposition

Let’s practice translating some English statements into propositions with quantifiers. The propositions
will be about people in a group (Alice, Bob, Charlie, ...) and friendships among them. We’ll write F (x, y)
for the predicate “x and y are friends”. When writing propositions formally, it is customary to use the
symbol ∃ for “there exists” and ∀ for “for all”.

Example 1. Let’s take the statement “Alice has friends”. It means that there is someone out there who
is Alice’s friend, which calls for an existential quantifier:

∃x : F (Alice, x).

Example 2. By default, Facebook allows friends of friends to view your profile. How do you write “Alice
is a friend of a friend of Bob”? This statement says there is someone out there who is a friend of Bob and
also a friend of Alice:

∃x : F (Alice, x) and F (Bob, x).

Example 3. How about “Alice and Bob have the same friends”? This statement says that anyone who
is friends with Alice is friends with Bob, and vice versa. The quantifier here is universal, and the operator
iff comes in handy:

∀x : F (Alice, x) iff F (Bob, x).

Example 4. “Everyone has a friend” is expressed as ∀x∃y : F (x, y), while “Someone in the group is
everyone’s friend” is expressed as ∃y∀x : F (x, y).

Example 5. “Alice has no friends” says there does not exist a person who is Alice’s friend, or

not ∃x : F (Alice, x).

How about Alice has “exactly one friend”? This proposition is a bit tricky because it says two different
things: (1) Alice has at least one friend (∃x : F (Alice, x)) and (2) Alice has no more than one friend. One
way to formulate (2) is to say “Any two friends of Alice must in fact be the same person”, or “If x and y
are both friends with Alice, then x = y”. We can express (2) as:

∀x, y : (F (Alice, x) and F (Alice, y)) −→ x = y

and so the statement “Alice has exactly one friend” becomes

(∃x : F (Alice, x)) and ((∀x, y : F (Alice, x) and F (Alice, y)) −→ x = y).

Mathematical books and manuscripts, for example our textbook, rarely use such formal notation be-
cause it is difficult to read. In your own mathematical writing I also encourage you to express your
propositions in plain English as much as possible. However, it is important that the meaning of your
proposition always be clear and unambiguous; if the need arose, you ought to be able to express your
proposition using logical symbols.

3 Quantifier logic

Here are two rules that come in handy for quantified predicates.

7

Quantifiers and negation

The proposition “not (For every x, P (x))” is equivalent to “There exists an x such that not P (x)”.
For example, the proposition “Not every number is greater than 2” is equivalent to “There exists a

number no greater than 2.”
The effect of this rule on propositions with two (or more) quantifiers is that negating the proposition

amounts to switching the quantifiers and negating the predicate:

not ∀x∃y : P (x, y) is equivalent to ∃x∀y : not P (x, y).

For example, the negation of “You can please some of the people all of the time”, which we can write
formally as ∃p∀t : P (p, t) with P (p, t) meaning “person p is pleased at time t”, is ∀p∃t : not P (p, t), namely
“Every person has a time when they are not pleased.”

The negation of “You can please all of the people some of the time”, i.e., ∀p∃t : P (p, t), is ∃p∀t : not P (p, t),
which translates to “There is a person who can never be pleased.”

Finally, the proposition “You cannot please all the people all the time”, which is represented by
not ∀p∀t : P (p, t), ie equivalent to ∃p∃t : not P (p, t), namely at some point, someone is not pleased.

Universal instantiation

If the proposition “There exists an x such that for all y, P (x, y)” is true, then the proposition “For all y
there exists a x such that P (x, y)” is also true.

For example, take the (true) proposition “There is a day of the week when there are no classes” (about
the uOttawa class schedule). This is the same as saying “There is a d such that for every c, class c does
not meet on day d of the week”. By the universal instantiation rule, we can conclude that “For every c,
there is a d such that class c does not meet on day d of the week”, i.e., “For every class there is a day of
the week when the class does not meet.” Indeed, that day is Sunday.

The converse of this rule is invalid: For example, the predicate “Every class meets on some day of the
week” is true, but “There exists a day of the week on which every class meets” is false.

In general, when we want to know how two quantified predicates relate to one another we cannot rely
on truth-tables because there is an infinite number of possibilities to consider. For example, suppose we
want to know if the two propositions

(∀x : P (x)) or (∀x : Q(x))
∀x : P (x) or Q(x)

are equivalent to one another. How should we go about this?
One useful way to get started is to assign some meaning to the abstract symbols like x, P , and Q. For

example, imagine a world of balls that may come in different shapes and weights. Suppose x represents a
ball, P (x) means “x is blue”, and Q(x) means “x is heavy”. Then we can interpret the two propositions
by the following English sentences:

All balls are blue, or all balls are heavy.
Any given ball is blue or heavy (or both).

If the first predicate is true, clearly so is the second one: Our world must consist of blue balls only or heavy
balls only, and in either case any given ball is blue or heavy.

However, if the second predicate is true, the first one may not necessarily be so. For example, our world
could consist of one ball that is blue and light, and another one that is red and heavy. In this world, the
second predicate is true but the first one is false. So we can conclude that the two are not equivalent.

8

4 Reasoning about quantifiers

It is sometimes tricky to figure out whether a proposition with quantifiers is true or false. Let’s start with

(1) Every even number is the sum of two odd numbers.

How do we go about figuring out if this is true? First, we identify that the leading quantifier refers to
“every even number.” We want to know if something is true for every even number, so we start by trying
out some examples. Is the statement true for 2? Yes, because 2 = 1 + 1. Is it true for 4? Yes, 4 = 3 + 1.
Is it true for 0? Yes, 0 = 1 + (−1). These “experiments” seem to indicate that the proposition is true.
Should we leave it at that?

Unfortunately we can’t. A predicate P (n) may well turn out to be true for all the cases n we can think
of checking, but the proposition “For all n, P (n)” could still be false. Here is a nice example:

(2) For every nonnegative number n, the number n2 + n+ 41 is prime.

To determine if this proposition is true, let’s try out some examples. 02 + 0 + 41 = 41, which is prime.
12 + 1 + 41 = 43, which is prime. 22 + 2 + 41 = 47, which is prime. Let’s try something bigger.
102 +10+ 41 = 151, which also happens to be prime. Can we conclude that the proposition is true? If we
did, we would be wrong: The number 412 + 41 + 41 is not prime; it is the product of 41 and 43.

Does this mean that the effort we spent in checking cases was wasted? No! If you look carefully, in
our analysis of proposition (1) all the examples we checked show a pattern: We write our even number as
another number plus one. We are on to something: Every even number n is the sum of n− 1 and 1. But
when n is even, n− 1 must be odd. So of course n is the sum of two odd numbers!

In contrast, for proposition (2), there is no discernible pattern in the examples we worked out. This
may mean two things: Maybe the pattern is there but we cannot see it, or maybe the proposition is false.
In this case the proposition turned out to be false.

Unfortunately, there is no foolproof method for finding the truth of propositions with quantifiers.
Mathematicians can spend their whole lives trying to figure out just one or a handful of propositions. Here
is one, Goldbach’s Conjecture from the year 1742, that still eludes them:

Every even number greater than 2 is the sum of two primes.

Computers have checked all values up to 4000000000000000000, but we still do not know if Goldbach’s
conjecture is true.

The best way to learn how to reason about propositions is through practice. But first we have to agree
on a standard by which we can agree that a proposition has been established as true: a mathematical
proof.

5 Satisfiability*

The material in starred sections is optional. It will not be tested.
Truth-table calculations are handy for formulas that depend on 2 or 3 atomic propositions, but the

work becomes significantly more difficult as the number grows. In general, the truth table of a compound
formula built from propositions P1, P2, up to Pn has 2n rows. When n = 20 the number of rows is over a
million and when n = 100 it is a 30-digit number. Writing out the truth table is then out of the question
even for the most powerful computers. In certain cases, there are much faster strategies.

Suppose we want to know if the proposition ϕ given by

(P and Q) or (P and R and S) or (Q and S) or (P and S)

is a tautology, namely always true. Here we use P as a shorthand for not P . One way is to write out the
16-row truth table and check if the last column is all true. Here is another method. First, we write out
the proposition not ϕ which is given by the formula

(P or Q) and (P or R or S) and (Q or S) and (P or S)

9

(If you are not sure how not ϕ was derived from ϕ see De Morgan’s laws in Section 3.4.2 of the textbook.)
Instead of checking if proposition F is always true, we’ll try to figure out if proposition not ϕ is always
false. So let’s investigate if is possible to find truth-values for P , Q, R, and S that make not ϕ evaluate
to true. Such a setting of truth-values is called a satisfying assignment for the formula not ϕ.

Let’s consider separately the cases when P is true and when P is false. If P was true, P must be false
and the formula for not ϕ simplifies to

Q and (Q or S) and S.

To obtain a satisfying assignment, it better be that Q and S are both true. But then Q or S is false. We
conclude that there is no satisfying assignment for not ϕ in which P is true.

Let us now consider the case when P is false. The formula for not ϕ then becomes

(R or S) and (Q or S).

We again consider what happens depending on the truth-value of Q. When Q is true, the formula simplifies
to R or S, which is clearly satisfiable when R is true. We conclude that the assignment P = F, Q = T,
R = T and, say, S = T is satisfying for the proposition not ϕ. Therefore not ϕ is not always false and
so ϕ is not a tautology.

Beyond tautologies The satisfiability problem is the following algorithmic question: Given a proposi-
tional formula, find a satisfying assignment for it if one exist and output “unsatisfiable” otherwise. Despite
its apparent simplicity, this problem is immensely important in virtually all areas of computer science
(including for instance machine learning, optimization, and cryptography).

The propositional formulas that are relevant to such domains may contain thousands or even millions
of atomic propositions, so solutions by brute-force search that look at the whole truth table are out of the
question. There are other, more clever algorithms, such as the DPLL algorithm which we used to find our
satisfying assignment to the formula not ϕ.1

Unforunately, there is no general-purpose satisfiability algorithm that is sound (it is never wrong),
complete (it always produces an answer), and efficient. Sometimes, however, algorithms like DPLL are
much faster than brute-force search. Here is one such example.

The eight queens puzzle: Can you place eight queens on a chessboard so that no two of
them attack one another?

If you are new to chess, it is enough for you to know that a queen attacks those pieces that share
its row, column, or diagonal. For example a queen at position d2 attacks all the crossed squares on the
following chessboard:

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0L0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

1DPLL and some other algorithms require that the formula is written in conjunctive normal form (CNF) – an AND of ORs
of literals, each of which is an atomic proposition or its negation. There is a procedure for converting an arbitrary formula
into a CNF (possibly with some extra literals) so that satisfying assignments are preserved.

10

https://en.wikipedia.org/wiki/DPLL_algorithm

The eight queens puzzle can be modelled as satisfiability of a propositional formula ψ that represents
the desired configuration of the chessboard. There are several possible ways to construct this formula;
here is one that is particularly natural for the eight queens puzzle. We start with 64 atomic propositions
Pa1, . . . , Ph8, one for each square of the chessboard. The intended meaning of Pa1 is “square a1 is occupied
by a queen”, and so on.

We would like the formula ψ to evaluate to true if and only if propositions Pa1 up to Ph8 describe
a configuration in which no two queens attack one another. We can naturally break up the constraints
imposed by the puzzle into the following three parts:

ψrow: At least one square in each row is occupied (by a queen).

ψcol: At least one square in each column is occupied.

ψattack: If two squares share a row, column, or diagonal, then they are not both occupied.

The propositional formulas for ψrow, ψcol, and ψattack are tedious to write out by hand but this can be
easily done on the computer. Formula ψrow looks like this:

(Pa1 or Pb1 or · · · or Ph1) and · · · and (Pa8 or Pb8 or · · · or Ph8)

Similarly, formula ψcol looks like this:

(Pa1 or Pa2 or · · · or Pa8) and · · · and (Ph1 or Ph2 or · · · or Ph8)

The formula ψattack is an AND of expressions of the form (P ij or P i′j′), where ij and i′j′ range over all
pairs of positions that share a row (j = j′), a column (i = i′), or a diagonal (|j− i| = |j′− i′|). For example,
ψattack contains the expression (P b3 or P f7), but does not contain (P c3 or P e6).

I wrote a computer program that generates the formula ψ and applies the minisat algorithm to search
for a satisfying assignment. The program came up with a satsifying assignment that translates to the
following eight queens puzzle solution:

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0ZQZ
5 Z0L0Z0Z0
4 0Z0Z0L0Z
3 Z0Z0Z0ZQ
2 0Z0ZQZ0Z
1 L0Z0Z0Z0

a b c d e f g h

The puzzle generalizes easily to other sizes. The same code produced the following solution for a 16× 16
board:

16 0Z0Z0Z0Z0Z0Z0Z0L
15 Z0Z0ZQZ0Z0Z0Z0Z0
14 0ZQZ0Z0Z0Z0Z0Z0Z
13 Z0Z0L0Z0Z0Z0Z0Z0
12 0Z0Z0Z0L0Z0Z0Z0Z
11 Z0Z0Z0Z0Z0ZQZ0Z0
10 0Z0Z0Z0Z0Z0Z0ZQZ
9 Z0Z0Z0Z0Z0Z0L0Z0
8 0Z0Z0Z0Z0ZQZ0Z0Z
7 L0Z0Z0Z0Z0Z0Z0Z0
6 0Z0L0Z0Z0Z0Z0Z0Z
5 Z0Z0Z0L0Z0Z0Z0Z0
4 0Z0Z0Z0Z0L0Z0Z0Z
3 ZQZ0Z0Z0Z0Z0Z0Z0
2 0Z0Z0Z0ZQZ0Z0Z0Z
1 Z0Z0Z0Z0Z0Z0ZQZ0

a b c d e f g h i j k l m n o p

11

http://minisat.se/

References

This lecture is based on Chapter 3 of the text Mathematics for Computer Science by E. Lehman, T.
Leighton, and A. Meyer. Material from slides by Prof. Lap Chi Lau were also used in the preparation.

12

	Propositions
	Quantifiers
	Quantifier logic
	Reasoning about quantifiers
	Satisfiability*

