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University of Ottawa, Winter 2024

In mathematics, the truth of propositions is established with a proof. If there is no proof then the
proposition cannot be used. This lecture is about what a proof is and how you may go about finding one.

There are clear and stringent rules about what qualifies as a mathematical proof. Two economists may
debate vigorously about economic truth: One could make a case that raising taxes would improve the
economy, while the other one might argue that lowering them would have that effect. A prosecution lawyer
might try to convince a jury that the accused broke the law, while a defence lawyer would argue that he
didn’t. In contrast, mathematicians overwhelmingly agree about what is true and what is false: Every
claim must come with a proof. A mathematician with sufficient training in his or her specialty ought to
be able to verify the correctness of the claimed proof, or to spot a mistake if the proof is incorrect.1

While verifying the correctness of a proof is a skill you can master with some effort and self-discipline,
creating proofs is a different story. Mathematics is full of propositions that nobody knows how to prove.
For some, like Goldbach’s conjecture, the search for a proof has been going on for hundreds of years. In
1998 the Clay Mathematics Institute collected seven famous propositions and offered a 1 million US Dollar
prize for each proof. So far only one has been proven.2

Coming up with proofs is not completely dark magic. There are general guidelines for what kind of
strategy might help with what type of proposition. However, it is important to remember that — unlike,
say, the recipe you learn in school for calculating square roots — these are not guaranteed to succeed.

1 What is a proof?

A proof of a proposition is a sequence of logical deductions from axioms and previously proved propositions
that concludes with the proposition in question.

Instead of trying to explain, in general, what axioms and logical deductions are, let us see an example
of a proof. For now we won’t ask how someone came up with it.

First we need to state the proposition that we intend to prove. A proposition for which a (correct)
proof is given is called a theorem. Before we state our theorem, we need to define a few concepts that will
show up in it.

The theorem I have in mind is about friendships. Let’s call two people strangers if they are not friends.
A group of friends is a collection of people in which every two of them are friends, and a group of strangers
is a collection of people in which every two are strangers.

Theorem 1. Any group of 6 people includes a group of 3 friends or a group of 3 strangers.

Proof. Let Alice be one of the six people. The proof is by case analysis. We consider two cases:

• Case 1: Alice is friends with at least 3 other people.

• Case 2: Alice is a stranger to at least 3 other people.

One of these two cases must hold: There are 5 people besides Alice, and these are divided into
friends of Alice and strangers to Alice. The bigger group has at least 3 people.

Now let’s discuss Case 1. Let’s give the group of people who are friends with Alice a name –
call it F for “friends of Alice”. We consider two subcases:

1An interesting recent case is Mochizuki’s claimed proof of the ABC conjecture.
2The prize money was refused.
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• Subcase 1.1: At least two people within F are friends. Let’s call them Bob and Charlie.
Then Alice, Bob, and Charlie form a group of 3 friends.

• Subcase 1.2: No two people within F are friends. Take any three people in F . They
form a group of 3 strangers.

We conclude that the Theorem holds in Case 1.

We are left with Case 2. Let’s give the group of people who are strangers to a a name – call it
S for “strangers to Alice”. We consider two subcases:

• Subcase 2.1: At least two people within S, call them Bob and Charlie, are strangers to
one another. Then Alice, Bob, and Charlie form a group of 3 strangers.

• Subcase 2.2: No two people within S are strangers. Take any three people in S. They
form a group of 3 friends.

The theorem also holds in Case 2, and so it holds in all the cases.

Theorem 1 talks about collections of people and friendships among people. The axioms are facts that
we view as self evident. For example, the following two axioms are implicitly used in our proof:

Axiom 1. For any two people x and y, if x and y are friends, then y and x are also friends.

Axiom 2. If a group that has Alice in it has 6 people, then there are 5 people other than Alice.

Let us now look at the proof. This is a proof by case analysis. Case analysis is a logical deduction rule.
It says that we can prove a proposition P like this: Split all logical possiblities into two cases C1 and C2,
prove that C1 and C2 cover all possibilities, prove that C1 implies P , and prove that C2 implies P .

C1 or C2 C1 −→ P C2 −→ P

P

It should be clear that this deduction rule is sound – it only proves true statements – but if in doubt you can
always write out a truth table. Let’s do it just this once. Here, ⋆ is shorthand for (C1 or C2) and (C1 −→
P ) and (C2 −→ P ).

P C1 C2 ⋆ ⋆ −→ P

T T T T T
T T F T T
T F T T T
T F F F T
F T T F T
F T F F T
F F T F T
F F F F T

Next, the proof has to tell us what the two cases (C1 and C2) are. Here, C1 is the proposition “Alice
is friends with at least 3 people” and C2 is the proposition “Alice is strangers to at least 3 people.”

Now, we expect to be given proofs of the propositions C1 or C2 (the cases cover all possibilities),
C1 −→ P (the theorem holds in case 1) and C2 −→ P (the theorem holds in case 2). By the case analysis
deduction rule, once we validate these proofs we’ll be sure that Theorem 1 is true.

Let’s start with C1 or C2. This says “Alice is friends with 3 people, or Alice is a stranger to 3 people”.
The next sentence explains why this must be true: Among friends and strangers to Alice there are 5 people,
so the bigger of the two groups must contain at least 5/2 = 2.5 people. As 2.5 is not an integer, there must
be at least 3 people in this group.

This appears like a sensible argument. It is fine to leave it at that. But how does it follow from our
axioms? We will see so shortly. For now let us “package” this proposition C1 or C2 as a lemma and give
its proof later:
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Lemma 2. In every group of six people including Alice, Alice is friends with at least three or
stranger to at least three.

A lemma is just like a theorem – a proposition with a proof. Usually, the theorems are the ones we are
really interested in, and lemmas are intermediate propositions that are used in the proofs of theorems.

Now comes the proof of the theorem in Case 1. For this part, we can assume C1: Alice is friends of
at least 3 people. You can think of it as another axiom, but just for this part of the proof. We divide C1

into two subcases: Those 3 contain a pair of friends (C11), or they are all strangers to one another (C12).
Clearly, C11 or C12 always holds. Next, we see that C11 implies the theorem (analysis of Subcase 2.1) and
C12 implies the theorem (anaysis of Subcase 2.2). So the theorem holds in all subcases of Case 1.

The last part of the proof is structurally similar: By the same type of reasoning, the theorem is shown
to hold in all subcases of Case 2. A mathematics book may omit this part altogether and say “Case 2 is
proved analogously to Case 1”. Before you become practiced at proofs, it may be better to refrain from
doing this and work out all the cases in detail.

Before we embark on the challenging task of discovering proofs, let us have one final word about axioms.
What, exactly, are we allowed to assume as an axiom or as a previously proved proposition when we prove
a theorem? For us, this will consist of the “common sense” facts you have learned in school, as well as
propositions we have previously proved in class. For example, if you are asked to prove a theorem in your
homework, it is okay to use Theorem 1 as a previously proved statement.

In the beginning of the 20th century logicians spent considerable effort trying to agree on a small
collection of axioms that ought to be enough to prove all known mathematics. One of the proposals are
the so-called ZFC axioms of set theory; you can read about them in the textbook. In principle, you can
define any mathematical object as a set of some kind and then write any proof relying on just these nine
axioms. In practice, deriving a proposition as simple as ∀n : n+ n = 2× n from the ZFC axioms may take
many pages of proof and explanation, so we won’t be doing that.

2 How to prove it

Let’s start by proving a simple theorem:

Theorem 3. The sum of two even integers is even.

How do we go about proving such a theorem? First, let us unwind this statement in terms of quantifiers:

For all integers m and n, if m is even and n is even, then m+ n is even.

This is a universally quantified proposition about two integers, which we call m and n. We need to
show that following implication:

(m is even) and (n is even) −→ (m+ n is even).

Let’s assume that m is even and n is even. This means there exist integers a and b such that m = 2a and
n = 2b. But then m+ n = 2a+ 2b = 2(a+ b), so m+ n is also twice an integer, and therefore even.

This is a common method for proving a statement of the form “If P then Q”. We assume P , do a bit
of reasoning, see what consequences we get, and eventually hope to end up with Q.

Once you figured out the reasoning, here is how you may write this proof:

Proof of Theorem 3. Let us call the two integers m and n. Assume m is even and n is even. Then there
exist integers a and b such that m = 2a and n = 2b. It follows that m + n = 2a + 2b = 2(a + b) = 2c,
where c = a+ b. Therefore m is also even.
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Let’s do another one:

Theorem 4. The product of two odd integers is odd.

We follow the same pattern.

Proof. Call the integers m and n. Since m and n are both odd, we can write m = 2a+ 1 and n = 2b+ 1
for some integers a and b. Then

mn = (2a+ 1)(2b+ 1) = (2a)(2b) + 2a+ 2b+ 1 = 2(2ab+ a+ b) + 1 = 2c+ 1

where c = 2ab+ a+ b. It follows that mn is also odd.

In these examples, the path to the proof was clear; we just need to move along (and avoid making
mistakes in the process). Other times we need to do some “scratch work,” that is reasoning which won’t
make it into the proof but helps us figure things out. Here is one such example:

Theorem 5. The square of an odd number is of the form 8k + 1 for some integer k.

Let’s call our number n. Since n is odd, we can write n = 2t+ 1 for some integer t. Then

n2 = (2t+ 1)2 = 4t2 + 4t+ 1.

Why should this be of the form 8k + 1? We want to show that given t, we can always find a k such that

4t2 + 4t+ 1 = 8k + 1

which we can simplify to t2 + t = 2k. Namely, we are now left to show that t2 + t is always even. To make
sure we are on the right track, we can try some examples: 12+1 = 2, 22+2 = 4+2 = 6, 32+3 = 9+3 = 12,
all even.

It seems there are two cases: t is even, in which case so is t2 and also t2 + t, or t is odd, in which case
so is t2, and so t2 + t is also even. This covers all possibilities. We now need to summarize them nicely
into a proof.

Before we do so, let’s revisit the last step and see if there is an easier way to explain why t2+ t is always
even. If we factor this expression, we get t2 + t = t(t+ 1). Now if t is even, so is t(t+ 1), and if t is odd,
then t+ 1 is even and so is t(t+ 1). This simplifies our case analysis a bit.

Proof of Theorem 5. Assume n is odd, so we can write n = 2t+ 1 for some integer t. Then

n2 = (2t+ 1)2 = 4t2 + 4t+ 1 = 4t(t+ 1) + 1

We now prove the theorem by case analysis.

• Case 1: t is even. Then we can write t = 2r for some r and 4t(t+ 1) + 1 = 8r(t+ 1) + 1 = 8k + 1
for k = r(t+ 1).

• Case 2: t is odd. Then t+ 1 = 2r for some r and 4t(t+ 1) + 1 = 8tr + 1 = 8k + 1 for k = tr.

The two cases cover all possibilities and the claim holds in each case.

Here is another one where some scratch work of a different sort is helpful:

Theorem 6. If x is a real number with 0 ≤ x ≤ 2, then −x3 + 4x+ 1 > 0.

This is a universally quantified proposition and there are infinitely many x to consider, so we need
to be a bit clever here. Fortunately, we live in an age of computers so we start by plotting the graph of
f(x) = −x3 + 4x+ 1:
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x

f(x)

This picture is not a proof; we must derive the theorem by logical deduction. So where do we start?
From the picture we can see that in the range of interest 0 ≤ x ≤ 2, f(x) is not only greater than zero,

but always exceeds 1, namely
If 0 ≤ x ≤ 2, then −x3 + 4x+ 1 ≥ 1.

The predicate −x3 + 4x+ 1 ≥ 1 is the same as −x3 + 4x ≥ 0. But now we can factor the left hand side as

−x3 + 4x = x(4− x2) = x(2− x)(2 + x).

When x is between 0 and 2, all of the terms x, 2− x, 2 + x are nonnegative, and so must be their product.
There!

We are not finished yet. We must now summarize our conclusions neatly into a proof with clear logical
deductions.

Proof of Theorem 6. Assume x is a real number such that 0 ≤ x ≤ 2. Then all of the numbers x, 2 − x,
and 2+ x must be nonnegative. It follows that x(2− x)(2+ x) ≥ 0. Multiplying out the left hand side, we
obtain −x3 + 4x ≥ 0. Therefore −x3 + 4x+ 1 ≥ 1 > 0, as claimed.

3 Some proof patterns

The contrapositive

The contrapositive of a proposition of the form P −→ Q is the proposition (not Q) −→ (not P ). The
two are logically equivalent. You can draw your own truth table to verify this.

A number r is rational if we can write r = n/d where both n and d are integers, e.g. 1/2, 3/2, 5/17,
8/16. A number is irrational if it is not rational.

Theorem 7. Assume r ≥ 0. If r is irrational, then
√
r is irrational.

Let us try to prove this theorem. We assume r is irrational. So r cannot be written as a fraction n/d
for any integers n and d. Where do we go from here? An assumption like this doesn’t tell us much about√
r, so it is not clear how to reach any conclusion about it. Instead, let us try the contrapositive:

Assume r ≥ 0. If
√
r is rational, then r is rational.

This is now much easier to prove.

Proof of Theorem 7. We prove the contrapositive. Assume r ≥ 0 and
√
r is rational. Then we can write√

r = n/d for some integers n and d. It follows that r = n2/d2, and so r is also rational.

Sometimes the “if... then” structure of the proposition may not be completely apparent as in Lemma 2
using this method. Recall what the lemma says:

5



In every group of six people including Alice, Alice is friends with at least three or stranger to at
least three.

Proof of Lemma 2. Suppose that Alice is friends with at most two others and stranger to at most two
others. Then the group, which comprises Alice, her friends, and the strangers, consists of at most 1+2+2 =
5 people. Therefore the group does not have six people.

Proving equivalences

A common way to prove a proposition of the form P iff Q, that is, an equivalence, is to prove separately
that P implies Q and that Q implies P :

P −→ Q Q −→ P

P iff Q

Here is an example.

Theorem 8. For every integer n, n2 is even if and only if n is even.

Proof. First, we prove that if n is even then n2 is even. If n is even, we can write n = 2k for some integer
k, so n2 = 4k2 = 2(2k2), which is also even.

Now, we prove that if n2 is even then n is even. We prove the contrapositive: If n is odd, then n2 must
also be odd. In Theorem 5 we showed that if n is odd then n2 is of the form 8k + 1 = 2(4k) + 1, which is
an odd number.

Proof by contradiction

Say you want to prove a proposition P . In a proof by contradiction, you start by assuming P is false, and
then you deduce that this assumption applies a falsehood. So P must have been true:

(not P ) −→ F

P

Here is a famous example:

Theorem 9.
√
2 is irrational.

This is a universally quantified statement: For all n and d, we cannot write
√
2 as n/d. You could try

different choices of n and d and see for yourself that they don’t work. Where to go from here?

Proof. Assume, for contradiction, that
√
2 is rational. Then we can write

√
2 = n/d where n and d are

integers. Furthermore, let’s take n and d so that they have no common factor greater than 1, so the fraction
is written in lowest terms.

Squaring both sides, we obtain 2 = n2/d2 and so n2 = 2d2. So n2 is even. Then n must also be even
(by Theorem 8), and so n2 is a multiple of 4. Because 2d2 = n2, d2 must be even, so d is also even.

We conclude that both n and d are even. But we assumed that they have no common factor greater
than 1. This contradicts our assumption that

√
2 is rational.

Proofs by contradiction can be confusing because you begin by assuming a statement that is, in fact,
false. So some of the claims you will be making inside the proof will also be false. You need to keep in mind
at all times that you are operating under a false assumption, and intermediate claims, like “d is even”, are
only true within that context. Because of this confusion, I generally recommend proofs by contradiction
only as a last resort, when all your other attempts at a proof have failed.
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Here is another example. The object we will be interested in is a rectangular table populated with
distinct numbers. A number in the table is a saddle if it is the largest in its column and the smallest in its
row. For example 6 is a saddle in this table:

9 6 8

3 2 1

7 4 5

Moreover 6 is the only saddle; there is no other in this table. This is no surprise:

Theorem 10. Every table with distinct numbers has at most one saddle.

You can convince yourself that this is reasonable by trying out more tables. Some will have one saddle,
some will have zero, but none will have more than one. How do we prove it?

Proof. Assume, for contradiction, that the table has two saddles x and y. We proceed by cases.

• x and y are in the same row. Then we have two smallest numbers in the same row, contradicting
that all numbers are distinct.

• x and y are in the same column. Then we have two largest numbers in the same column, contradicting
that all numbers are distinct.

• x and y are in different rows and columns. Let u be the unique number in the table in the same row
as x and in the same column as y. Since x and y are saddles, u > x and u < y. Now let v be the
number in the same column as x and in the same row as y. Since x and y are saddles, v < x and
v > y. Putting these inequalities together we obtain

x < u < y < v < x

which is impossible. This contradicts our assumption that x and y are both saddles.

4 More proofs

We continue with the same setup. Take a table and sort its rows. They sort its columns. Are the rows
still sorted? Let’s try it out:

9 6 7

1 8 5

4 3 2

sort rows−−−−−→
6 7 9

1 5 8

2 3 4

sort cols−−−−−→
1 3 4

2 5 8

6 7 9

The rows remain sorted. How do we explain this?

Conjecture 1. In any table of distinct numbers, after sorting the rows and then the columns, the rows
remain sorted.

The numbers in the first table are in arbitrary order. After sorting the rows, we know that all consecutive
pairs in a given row must be in increasing order:

6 < 7 < 9

1 < 5 < 8

2 < 3 < 4

We want to argue that, after sorting the columns, the rows are still in order. Namely, in each row the first
number is smaller than the second one and the second number is smaller than the third one. Now, if we
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want to argue that the first number in each row remains smaller than the second, the third column of the
table is not relevant. We can focus on the sub-table spanned by the first two columns only:

6 < 7

1 < 5

2 < 3

sort cols−−−−−→
1 < 3

2 < 5

6 < 7

Why do the rows remain in order after sorting the columns? Let’s start by looking at the first row after
sorting. This row will contain the smallest number in the first column (1) followed by the smallest number
in the second column (3). Which of the two will be larger? Well the smallest number in the second column
must be larger than at least one number in the first column, namely the number that was next to it (2).
It must therefore be the larger of the two:

6 < 7

1 < 5

2 < 3

sort cols−−−−−→
1 < 3

2 5

6 7

Now let’s look at the second row in the sorted table. This row will comprise the second smallest numbers
in both columns. Which is larger? We can reason in a similar manner: The two smallest numbers in
column 2 are both larger than their neighbors in column 1 (5 > 1 and 3 > 2). So the second smallest
number in column 2 (5) must be larger than the second smallest number in column 1 (2). The second row
will therefore remain sorted.

We now have all the ingredients for the proof of our theorem:

Theorem 11. In any table of distinct numbers with sorted rows, after sorting the columns, the rows remain
sorted.

First we prove a lemma:

Lemma 12. Let x1, . . . , xn and y1, . . . , yn be two columns of numbers, all of them distinct. Assume xi < yi
for all i (between 1 and n). Then for every k (between 1 and n), the k-th smallest number in the x-column
is smaller than the k-th smallest number in the y-column.

Proof. Any k numbers in the y-column are larger than the k numbers in the x-column that are in the same
rows. Therefore the k smallest numbers in the y-column are all larger than some k distinct numbers in the
x-column. In particular, the k-th smallest number in the y column must be larger than at least k numbers
in the x-column, so it must be larger than the k-th smallest number in the x-column.

Proof of Theorem 11. Let xij and yij be the entry in row i and column j before and after sorting the
columns, respectively. Let n be the number of rows and m be the number of columns. As the rows are
initially sorted, xij < xi(j+1) for all i and j (where i ranges from 1 to n and j ranges from 1 to m− 1). We
apply Lemma 12 to the j-th and (j + 1)-st columns x1j , . . . , xnj and x1(j+1), . . . , xn(j+1). Lemma 12 says
that the k-th smallest numbers in these two columns must be in increasing order. Therefore yij < yi(j+1)

for all i (between 1 and n) and all j (between 1 and m−1). It follows that the rows of y are all sorted.

Experiment and don’t give up easily!

When you start out trying to prove a theorem, you rarely know what is the right method ahead of time.
So play around, experiment, backtrack, and don’t be afraid. The “correct” approach will often reveal itself
after a few trials and errors.

Theorem 13. There exist irrational numbers a and b such that ab is rational.
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Where do we start? Let’s try some examples. Well, the only number we know for sure is irrational is
√
2, so let’s try setting a =

√
2 and b =

√
2. Is

√
2
√
2
rational or irrational? It looks pretty irrational to

me, so it doesn’t seem that this should work out.3

Ah, but if
√
2
√
2
is irrational, then we have one more irrational number to play with. So why don’t we

try a =
√
2
√
2
and b =

√
2
√
2
. Then

ab =
(√

2

√
2
)√

2
√
2

=
√
2

√
2·(

√
2)

√
2

=
√
2

√
2
√
2+1

What a mess! Let’s backtrack and try instead a =
√
2
√
2
and b =

√
2. Then

ab =
(√

2

√
2
)√

2
=

√
2
(
√
2)2

=
√
2
2
= 2

which is a rational number! Let’s summarize this reasoning into a proof.

Proof. The proof is by case analysis.

Case 1:
√
2
√
2
is rational. In this case, the theorem is true for a =

√
2 and b =

√
2.

Case 2:
√
2
√
2
is irrational. In this case, the theorem is true for a =

√
2
√
2
and b =

√
2 because ab = 2.

This type of proof is sometimes called a win-win argument. It doesn’t matter if
√
2
√
2
is rational or

not. In either case you win. You may not always get this lucky, but it doesn’t hurt to try.

5 How to write and present a proof

For this class, it is not enough that you know how to come up with proofs. You must also write and present
them properly. Writing a proof is not easy. On the one hand the proof must be clear and precise. On the
other hand, it should be easy to read and understand (by humans, not by machines). For general advice
on how to write proofs, see Section 1.9 in your textbook.

Presenting a proof to others is also challenging. Your listeners may not be familiar with the notation.
Steps in the proof that are obvious to you may take longer for others to grasp. So start from the beginning
and go slowly; do not introduce too many new concepts at once; give examples along the way; and encourage
questions from your audience.

6 Truth and proof*

Mathematical proofs are guaranteed to be sound: If you start with a set of axioms and rigorously follow
the deduction rules, any proposition you derive must be true. In other words, everything that is provable
is true. How about the converse: Do all true propositions have proofs?

This sounds like a trick question so let’s try to unwrap its meaning. What it says is that for every
proposition P , if P is true than P has a proof. The meaning of “P has a proof” should be clear: This
means we can derive P from our axioms after some sequence of deductions. But what does “P is true”
really mean?

3This part of the argument is not conclusive: “It looks pretty irrational” doesn’t make a number irrational. Perhaps we’ll
come back to it later, but we might as well try something easier first.
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Before we answer this question let’s do an exercise. Suppose we want to figure out things about integers
and we start with the following axioms:

∀x : x+ 0 = x (A1)

∀x∃y : x+ y = 0 (A2)

∀x, y : x+ y = y + x (A3)

∀x, y, z : (x+ y) + z = x+ (y + z) (A4)

Clearly these axioms hold true for the integers. Now I want to prove that

∀x : x+ x = 0 −→ x = 0. (P)

Although proposition (P) is true, it can never be proved from axioms (A1-A4). The reason is that there is
a world (logicians call this a model) in which axioms (A1-A4) are true, but proposition (P) is false. This
is the world Z2 consisting of the elements 0 and 1 in which addition is specified by the formulas

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 0.

Any proposition we prove from axioms (A1-A4) must be true not only for the integers, but also for Z2, so
in particular proposition (P) cannot be proved from axioms (A1-A4).

In this case, it is easy to explain what went wrong: Although axioms (A1-A4) are certainly true about
the integers, they do not specify the integers completely because they also describe, for instance, Z2. The
issue here is not the logic, but the axioms: We need more of them in order to “pin down” the integers.

More generally, suppose we start with some collection of axioms A. When can we hope to prove a given
proposition P? At a minimum, we should ensure that P is true in every world in which the axioms A are
all satisfied. Let’s take, for example, the proposition

∀x, z, w : z + x = w + x −→ z = w.

This one is true for both the integers and Z2, so (based on our experience so far) we may hope that it can
be proved from axioms (A1-A4). Indeed, here is the proof: Starting with the assumption

z + x = w + x

we get that for every y
(z + x) + y = (w + x) + y

which, applying (A4) on both sides, can be rewritten as

z + (x+ y) = w + (x+ y).

Now choosing y as in axiom (A2) we get that x+ y = 0 and so

z + 0 = w + 0

from where, after applying axiom (A1) on both sides we obtain the desired conclusion

z = w.

This example illustrates a general phenomenon called completeness: If a proposition P is true in every
world in which the axioms A are also true, then P is provable from A.

To be precise, completeness says that P is provable from A together with a fixed collection of self-
evident logical axioms by applying one of a few specific deduction rules. One collection of logical axioms
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and deduction rules for which completeness holds is the Hilbert System. This system includes infinitely
many logical axioms, but has only one deduction rule called Modus Ponens:

P P −→ Q

Q
. (1)

Writing proofs in Hilbert System format is not particularly natural for humans, but can always be done in
principle.

This sounds like very good news: As long as we start with a collection of axioms that accurately
describe the world we have in mind, we can in principle prove everything from them (as long as it is true).
For example, if we want to determine the truth of propositions about numbers (integers) that involve the
symbols 0, 1, and +, then the axioms of Presburger arithmetic suffice.

Automated theorem proving To a student of mathematics like you, proving theorems is a creative,
challenging, and (I hope) enjoyable activity. In principle, however, theorem proving can be done in a purely
methodical way that requires no creativity whatsoever. Suppose you want to know if some proposition
X about numbers is true or not. Take all pairs of axioms (the Presburger arithmetic axioms plus the
Hilbert System logical axioms) of the form P and P −→ Q and apply the deduction rule (1) to derive
some theorems Q. Now take all pairs of axioms and theorems you have obtained so far and repeat the
process. By completeness, every true proposition will eventually show up among your list of theorems. In
particular, one of the propositions X (if it happens to be true) or not X (otherwise) will show up at some
point.4

So if you want to prove theorems, all you have to do is write a computer program that takes as its input
the axioms and the proposition under investigation and performs all of the above calculations. Why do we
bother with all the wishy-washy proof strategies like the ones in these lecture notes and not simply prove
all theorems in this automated manner? Not only would automation save us a huge amount of effort, but
it would also eliminate the pesky mistakes that, every once in a while, make us come up with incorrect
proofs.

You may guess that automated theorem proving of the type I described doesn’t work so well in practice
because it is way too slow. Suppose I wanted to prove a theorem (about numbers) like

∃x, y : x = y + 1 and x+ x = y + y + y + 1.

This one is pretty easy for a human to figure out. The computer, on the other hand, will keep spitting out
theorems until, eventually, this particular one appears on the list. There is no way to know how long this
is going to take, and for “random” theorems like this one you should be prepared to wait for a very very
long time.

The theorem prover I described is particularly stupid in the sense that it doesn’t try to mimic human
reasoning at all, so theorems that may be of interest to humans will be lost in a sea of computer-generated
junk. This has partly to do with the choice of axioms, the choice of deduction rules, and the order in which
they are applied. The field of automated theorem proving is concerned with the design, implementation,
and application of such systems. Some of these are completely automated, while others are interactive;
when they get stuck, they ask the user to provide a hint.

Incompleteness There is another, much more surprising (although maybe less relevant in practice)
obstacle to automated theorem proving that has nothing to do with the efficiency of such procedures. To
explain the notion of incompleteness, we first need to broaden our horizons a bit.

Talking about addition of integers gets pretty boring pretty fast. Once multiplication enters the picture
the propositions become much more exciting. Multiplication allows us to talk about things like prime
numbers and formulate very difficult problems like Goldbach’s conjecture.

4The method I described is not quite correct because the number of axioms is infinite, so the first round of theorem-proving
will take forever. It can be modified to eliminate this “bug”. Can you figure out how?
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But what is the big deal about multiplication? In second grade you learned that multiplying m and n
is the same as adding n to itself m times:

m× n = n+ n+ · · ·+ n︸ ︷︷ ︸
m times

What about a proposition like “A number is even only if its square is even”? Well, this says

∀m : (∃n : m+m+ · · ·+m︸ ︷︷ ︸
m times

= n+ n) −→ (∃k : m = k + k)

The · · · look a bit fishy, and indeed they are. It turns out that it is impossible to define multiplication
using only the symbols 0, 1, and + and the notation of quantifier logic.

In order to prove theorems about numbers that involve addition and multiplication, we need more
axioms. One collection of axioms that was proposed after some careful thought are the axioms of Peano
arithmetic. You can rewrite proofs of propositions like “If n2 is even then n is even” into Peano arithmetic
without terrible effort.

In 1931 Kurt Gödel produced a proposition about numbers (with 0, 1, +, and ×) that is true, but
cannot be proved from the axioms of Peano arithmetic. Knowing what we know, it seems reasonable to
conclude that the problem should lie with the axioms, as they probably do not describe numbers sufficiently
accurately, but maybe also some other unintended structure like Z2. This is not the case. Gödel actually
proved something much more surprising that has nothing to do with the specific content of the Peano
axioms:

Gödel’s Incompleteness Theorem. For every collection of reasonable5 axioms A about numbers (with
0, 1, +, and ×) that are true there exists a proposition P about numbers that is true, but is not provable
from A.

So an automatic search for a proof of, say, Goldbach’s conjecture may well be doomed from the start:
We can never be sure that the Peano axioms, or any other “self-evident” set of axioms we start with, is
sufficient to prove it. (Most working mathematicians believe that, in this particular case, the Peano axioms
should be sufficient.)

Gödel’s incompleteness theorem is one of the most surprising theorems in all of mathematics. What is
even more surprising is that even though this theorem talks about propositions concerning integers, it is
fundamentally related to computer programs. Let me explain how. Take a good look at the following java
program:

public class X {public static void main(String[] args){int[][] t = new int[][]{{2

02,1026,1100,396,324,1080,192,609,555,888,72,432},{3,9,8,5},{2,2,5,9},{4,6,1,9,2,

11},{4,6,1,9,3,2,11,7,0,5,10},{2,1,5,9},{1,9,2,5},{0,2,10,5,1,6,3,11,8,4},{10,4,2

,6},{1,10,2,3,5,9,7,4,11,6},{7,0,3,6},{2,9,10,1},{7,1,10,6},{12,0,-0}};do{while(t

[13][1]+1<t[t[13][0]].length){t[13][2]=t[0][t[t[13][0]][t[13][1]]];t[0][t[t[13][0

]][t[13][1]]]=t[0][t[t[13][0]][++t[13][1]]];t[0][t[t[13][0]][t[13][1]++]]=t[13][2

];}}while(!(--t[13][0]<=(int)Math.sin(Math.PI))&&((t[13][1]=0)<1));while(t[4][2]<

=t[9][5]+3)System.out.print((char)(t[0][t[4][2]-1]/t[4][2]++));}}

What does program X do? It is very difficult to tell just by looking at the code. You could try to
type it up in your machine and run it. You run it for 1 hour, 2 hours, 10 days, it does nothing... will it
eventually output something and terminate or is it stuck in an infinite loop? So maybe you write some
computer code that tries do some automated program analysis and determine if program X will eventually
terminate. In the most famous paper in computer science ever written, Alan Turing showed that your
analysis tool will, in general, not be of much help:

5“Reasonable” is a technical term that prevents cheating by say, taking all propositions that are true about numbers as
axioms. It means there exists a computer program that prints a possibly infinite list of all the axioms.
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Turing’s Theorem. There does not exist a computer program T such that (1) T terminates on every
input and (2) when given the code of a computer program X as input, T outputs “yes” if X eventually
terminates and “no” otherwise.

Gödel’s Incompleteness Theorem is, in fact, a special case of Turing’s Theorem. How so? Well, for every
computer program X, the proposition “X eventually terminates” is either true or false. So our automated
theorem prover should eventually tell us which is the case. But which axioms should we feed to it to get
its reasoning started? It looks like we need some axioms that describe the logic of computer programs.
What are they?

This is a trick question. We already saw the axioms of computer programs. They are the same as
the axioms of Peano arithmetic. But how can this be? The Peano axioms are about numbers, not about
programs. It turns out that a computer program is a number in disguise. After all, a computer’s memory is
nothing more than a long string of bits, and what a computer program does is merely some fancy copy-paste
operations on such strings. So any proposition about computer programs is essentially a proposition about
strings with operations like bit lookup, copying, and pasting. In Question 6 of Homework 1 you saw how
propositions about strings can be formulated as propositions about numbers.6 In fact, every proposition
about computer programs can be expressed as a proposition about numbers.

Now consider the following implementation of Turing’s program T : On inputX, translate the statement
“X eventually terminates” into a proposition PX about numbers and run the automatic theorem prover
on this proposition, starting with your favorite axioms about numbers. If the prover finds a proof of PX

output “yes”. If it finds a proof of not PX output “no”.
There are two possibilities. If a proof of PX or a proof of not PX exists for every program X, then the

automatic theorem prover will eventually find this proof and T will correctly determine if X terminates or
not. But this is not allowed by Turing’s theorem. Therefore the second possibility must hold: There must
exist a program X for which neither of the propositions PX and not PX has a proof. One of these two
must be true but not provable from the axioms, confirming Gödel’s Incompleteness Theorem.
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