
CSI 2101: Discrete Structures Lecture 3
University of Ottawa, Winter 2024

Induction is a method for proving theorems of the form “For all n, P (n)”, where n ranges over the
positive integers. It is particularly useful in computer science when reasoning about the correctness of
algorithms. Let’s start with an example.

Theorem 1. For every n, the sum of the integers from 1 to n is n(n+ 1)/2.

The kinds of proofs we learned last time don’t seem to help. Before we do the proof let’s gain some
confidence that the theorem is plausible by working out a few small examples:

• When n = 1, (1 + 1)/2 = 1.

• When n = 2, 1 + 2 = 3, and 2 · (2 + 1)/2 = 3.

• When n = 3, 1 + 2 + 3 = 6 and 3 · (3 + 1)/2 = 6.

• When n = 4, 1 + 2 + 3 + 4 = 10 and 4 · (4 + 1)/2 = 10.

The cases check out, but we cannot go on like this forever. How can we prove the theorem for all n? Let’s
give the predicate “The sum of integers from 1 to n is n(n+ 1)/2 a name; call it P (n).

Induction models the following reasoning process. First, we prove P (1). Then we prove P (2); in our
proof for P (2), we can assume that P (1) is known to be true (use it as an axiom). When we prove P (3),
we can assume P (2) to be true, and so on:

P (1) P (1) −→ P (2) P (2) −→ P (3) P (3) −→ P (4)

P (1) and P (2) and P (3) and P (4)

We can extend this reasoning to a general value of n. If we prove P (1) is true, and we prove that for
every n ≥ 1, P (n+ 1) is true assuming P (n), then P (n) must be true for all n:

Induction proof method:

P (1) P (n) −→ P (n+ 1) for all positive integers n

P (n) for all positive integers n

Proposition P (1) is called the base case; proposition “P (n) −→ P (n+1) for all n” is called the inductive
step. To prove the inductive step, you can try any of the methods from last lecture.

Proof of Theorem 1. We prove the theorem by induction on n. Let S(n) denote the sum of the first n
integers. Then the proposition says that

S(n) =
n(n+ 1)

2
for all positive integers n

Base case n = 1: S(1) = 1 and 1(1 + 2)/2 = 1, so S(1) = 1(1 + 1)/2.
Inductive step: We need to show that for every positive integer n

S(n) =
n(n+ 1)

2
−→ S(n+ 1) =

(n+ 1)(n+ 2)

2
.

Let n be any positive integer. We assume S(n) = n(n+ 1)/2. Then

S(n+ 1) = S(n) + (n+ 1)

so, by our assumption that S(n) = n(n+ 1)/2, we get

S(n+ 1) = S(n) + (n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

n(n+ 1)

2
+

2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
.

It follows by induction that S(n) = n(n+ 1)/2 for all positive integers n.

1

1 More proofs by induction

Let’s do another example, this one involving an inequality. The factorial of n, denoted by n!, is the number
obtained by multiplying all integers from 1 to n:

n! = 1 · 2 · · ·n.

Theorem 2. For every integer n ≥ 4, n! > 2n.

We will prove this theorem by induction. The base case here will be n = 4.

Proof. We prove the theorem by induction on n.
Base case n = 4: 4! = 1 · 2 · 3 · 4 = 24 > 16 = 24, so the base case holds.
Inductive step: We need to show that for every positive integer n ≥ 4

n! > 2n −→ (n+ 1)! > 2n+1.

Let n be any positive integer greater or equal to 4. We assume n! > 2n. Then

(n+ 1)! = n! · (n+ 1) > 2n · (n+ 1) > 2n · 2 = 2n+1.

It follows by induction that n! > 2n for all integers n ≥ 4.

How did one come up with the inequality 2n · (n+ 1) > 2n · 2? It looks like a lucky guess, but we can
reason about it backwards. In the inductive step, we need to prove that 2n · (n + 1) > 2n+1. If we factor
out 2n from both sides, we are left with showing that n+ 1 > 2. This is the same as saying n > 1, which
is certainly true under the assumption n ≥ 4.

This kind of “backwards reasoning” is often helpful in proofs by induction. You are encouraged to use
it as part of your scratch work, but not in the written proof.

Theorem 3. For every positive integer n, n3 − n is a multiple of 6.

You can prove this theorem in several ways. Try a proof by cases at home. Here we’ll do it using
induction.

Proof. We prove the theorem by induction on n.
Base case n = 1: 13 − 1 = 0, which is a multiple of 6, so the base case holds.
Inductive step: We need to show that for every positive integer n,

n3 − n is a multiple of 6 −→ (n+ 1)3 − (n+ 1) is a multiple of 6.

Let n be any positive integer. We assume that n3 − n is a multiple of 6. Then

(n+ 1)3 − (n+ 1) = (n3 + 3n2 + 3n+ 1)− (n+ 1) = n3 + 3n2 + 2n = (n3 − n) + 3(n2 + n)

By inductive hypothesis, n3 − n is a multiple of 6. In the last lecture we showed that n2 + n is even for all
n, so 3(n2 + n) is also a multiple of 6. Therefore (n3 − n) + 3(n2 + n) is also a multiple of 6.

It follows by induction that n3 − n is a multiple of 6 for all positive integers n.

Where did the equality
n3 + 3n2 + 2n = (n3 − n) + 3(n2 + n)

come from? Our inductive hypothesis says that n3 −n is a multiple of 6, but the expression n3 +3n2 +2n
doesn’t “contain” n3 − n. To take advantage of the inductive hypothesis, it makes sense to subtract one n
from n3 and compensate by adding another one to 3n2 + 2n.

2

Strengthening the hypothesis

You are given a 2n by 2n square grid with a central square removed. (A central square is one that touches
the center of the grid.) You want to tile the remaining squares with L-shaped tiles, each tile occupying 3
squares. Can it always be done? Here is an example with n = 2:

Let us prove that that a tiling always exists.

Theorem 4. For every positive integer n, there exists a tiling of a 2n by 2n square grid with a central
square removed using L-shaped tiles.

Let us try to prove this theorem by induction. In the base case n = 1, the tile has dimensions 2 by 2
and the proposition is clearly true.

Now let’s try the inductive step. Let us fix n and assume the proposition is true for n, namely there
exists a tiling of a 2n by 2n grid with a central square removed. We want to show that there also exists
a tiling of a 2n+1 by 2n+1 grid with a central square removed. To apply the inductive hypothesis, it
makes sense to split this grid into four 2n by 2n subgrids. Unfortunately, the subgrids don’t satisfy the
requirement of having their central square removed; one of them will be missing a corner and the other
three will be whole. It looks like we are stuck.

The trick here is to prove a more general theorem – one of which Theorem 4 is a special case.

Theorem 5. For every positive integer n, there exists a tiling of a 2n by 2n square grid with any one
square removed using L-shaped tiles.

Proof. We prove the theorem by induction on n.
Base case n = 1: Given a 2 by 2 grid with any square removed, the other 3 form a 2 by 1 L-shape,

so they can be covered by one tile. Therefore a covering of the grid by tiles exists.
Inductive step: Let us assume that a 2n by 2n grid with any one square removed can be tiled using

L-shaped tiles. We will show that the same is true for a 2n+1 by 2n+1 grid. Let G be a 2n+1 by 2n+1

grid with some square removed. Divide G into four 2n by 2n quadrants G1, G2, G3, G4. One of these
quadrants will contain the missing tile. Temporarily remove the center tiles of G that do not below to
that quadrant. Then each of G1, G2, G3, and G4 becomes a 2n by 2n grid with one square removed. By
inductive hypothesis, each one of them can be tiled using 2 by 1 L-shapes. Tile all the subgrids and cover
the temporarily removed three center tiles of G by one more L-shape. The resulting tiling covers all of G
except for the removed square.

It follows by induction that for every n there exists a tiling of the 2n by 2n square grid with any square
removed using L-shaped tiles.

Theorem 5 (which allows for any square in the grid to be removed) is more general than Theorem 4,
so we would expect it to be more difficult to prove. However, we proved Theorem 5, while the same proof
method failed when we tried it on Theorem 4! The reason is that in proofs by induction, the predicate
P (n) plays the role both of assumption and conclusion. Sometimes making a stronger assumption allows
us to prove a stronger conclusion.

3

An interesting feature of this proof is that it not only tells us the desired tiling exists, but also how to
find it. You can write a computer program that does it.

After all this it turns out that it is possible to prove Theorem 4 directly by induction. However we
have to induct differently.

Proof of Theorem 4. We prove the theorem by induction on n. The base case n = 1 was already handled.
Inductive step: Assume a 2n by 2n grid G with a central square removed can be tiled using 2 by 1

L-shaped tiles. We blow up each square of G into four smaller squares. This gives us a tiling of a 2n+1 by
2n+1 grid G′ consisting of the smaller squares. The four squares in G′ arising from the central square of
G removed. Moreover, the 2 by 1 L-shaped tiles in G map become 4 by 2 L-shaped tiles in G′. To obtain
a proper tiling of G with one central square removed using 2 by 1 L-shaped tiles, we cover the other three
squares near the center with a 2 by 1 L-shaped tiles, and we cover each 4 by 2 L-shaped tile that came
from the tiling of G with four 2 by 1 L-shaped tiles like this:

The result is a valid tiling of G′ with one central square removed and 2 by 1 tiles.

This proof can also be turned into a procedure that finds the tiling. In general this will be a different
tiling than the one coming from the proof of Theorem 5.

A false proof

“Theorem:” In every nonempty set of horses, all horses are of the same colour.

Proof. We prove this theorem by induction on the size n of the set.
Base case n = 1: The set has one horse, so the statement is true.
Inductive step: Assume that in every collection of n horses, all of them have the same colour. We

will prove that in every set of n+1 horses, all of them have the same colour. Take any set of n+1 horses:

h1, h2, . . . , hn+1.

By our assumption, the first n horses h1, . . . , hn are of the same colour. By the same assumption, the last
n horses h2, . . . , hn+1 have the same colour. So h1, . . . , hn+1 all have the same colour.

It follows by induction that all horses in the set are of the same colour.

Where was the mistake? To “debug” a proof by induction, it is a good idea to try out some values of
n and see where the chain of reasoning went wrong. Let P (n) be the predicate “All sets of n horses have
the same colour.” As we saw, P (1) is true. However, P (2) is already false. So the inductive step fails
when n = 1, that is when we try to prove P (2) assuming P (1). The proof says that in this case, the first 1
horse(s) have the same colour and the last 1 horse(s) have the same colour. We cannot conclude that both
have the same colour! In other words, the deduction

h1, . . . , hn have the same colour h2, . . . , hn+1 have the same colour

h1, . . . , hn+1 have the same colour

is not valid when n = 1.

4

2 Strong induction

Recall our intuition for induction: If we want to prove a predicate P (n) holds for all n ≥ 1, first we prove
P (1). Then assuming P (1) we prove P (2). Then assuming P (2) we prove P (3); and so on. In fact, we
can make our assumptions stronger as we go along. By the time we are proving P (3), we have proved not
only P (2) but also P (1), so we can assume both of them to hold:

P (1) P (1) −→ P (2) (P (1) and P (2)) −→ P (3) (P (1) and P (2) and P (3)) −→ P (4)

P (1) and P (2) and P (3) and P (4)

The strong induction proof method extends this reasoning to a general value of n: If we prove P (1)
and we prove that for every n ≥ 1, P (n+1) is true assuming P (1) up to P (n) are all true, then P (n) must
be true for all n:

Strong induction proof method:

P (1) (P (1) and . . . and P (n)) −→ P (n+ 1) for all positive integers n

P (n) for all positive integers n

Here is a problem where strong induction is useful. Suppose you have an unlimited supply of $3 and
$5 stamps. Which postage amounts are your stamps good for?

Let’s model this as a problem about numbers. The postage amounts you can obtain are numbers of
the form 3a+ 5b, where a and b range over all nonnegative integers. You can easily see that the numbers
1, 2, 4, 7 cannot be written in this way, while 3, 5, 6 can. Let’s now see what happens when n ≥ 8.

We can write 8 = 3 + 5, 9 = 3 × 3, 10 = 2 × 5. Once we have 8, 9, and 10, we can form any other
number by adding a sufficient number of 3s: 11 = 8 + 3, 12 = 9 + 3, 13 = 10 + 3, 14 = 11 + 3, and so on.
Here is how we write this argument as a proof by strong induction.

Theorem 6. Any integer n ≥ 8 can be written in the form 3a+ 5b for some integers a, b ≥ 0.

Proof. We prove the theorem by strong induction on n.
Base case n = 8: We can write 8 = 3 + 5, so the theorem is true for a = b = 1.
Inductive step: Let n be any number greater than or equal to 8. We assume any integer from 8 to n

can be written in the form 3a+ 5b. We will show that n+ 1 can also be written as 3a+ 5b. The proof is
by cases:

• Case n+ 1 = 9: We can write 9 = 3× 3.

• Case n+ 1 = 10: We can write 2 = 5× 2.

• Case n+ 1 ≥ 11: In this case, (n+ 1)− 3 ≥ 8, so by inductive hypothesis, (n+ 1)− 3 = 3a+ 5b for
some integers a, b ≥ 0. Then n+ 1 = 3(a+ 1) + 5b.

By strong induction, we can write any n ≥ 8 in the form 3a+ 5b for integers a, b ≥ 0.

The Fibonacci sequence is defined by the recurrence Fn+1 = Fn + Fn−1 with F1 = 1 and F2 = 2. The
first few terms are

1 2 3 5 8 13 21 34 55

Which numbers can be written as a sum of distinct Fibonacci numbers? The first ten certainly can.
1, 2, 3, 5, 8 are already there. As for the others,

4 = 3 + 1 6 = 5 + 1 or 3 + 2 7 = 5 + 2 9 = 8 + 1 or 5 + 3 + 1 10 = 8 + 2 or 5 + 3 + 2.

Indeed this is always possible:

5

Theorem 7. Every positive integer is a sum of (one or more) distinct Fibonacci numbers.

Induction is a sensible strategy here. Suppose we know how to writem−1 as a sum of distinct Fibonacci
numbers. Since 1 is a Fibonacci number, we obtain a representation of m as a sum of Fibonacci numbers
also. There is however a flaw in the reasoning here.

The issue is that the Fibonacci numbers we used might not be distinct. For example, we know we can
represent 9 as 5+3+1. If we use this strategy we end up with the representation 10 = 9+1 = 5+3+1+1
and the Fibonacci numbers are not distinct.

How can we ensure distinctness? If we want to represent m as a sum of distinct Fibonacci numbers we
may have various choices for the first summand. Suppose we pick the Fibonacci number Fn. Then we are
left with the task of writing m − Fn as a sum of distinct Fibonacci numbers none of which collide with
Fn. If we could arrange that all of the numbers in the representation of m− Fn are smaller than Fn then
there would certainly be no collision. This suggests a strategy: Choose Fn so that m − Fn is as small as
possible, namely Fn is as large as possible. Let’s try out this strategy, underlining the largest Fibonacci
number that can be used at every step:

12 = 8 + 4 = 8 + 3 + 1

18 = 11 + 7 = 11 + 5 + 2

46 = 34 + 12 = 34 + 8 + 4 = 8 + 3 + 1.

In these examples we managed to express the number m on the left as the sum of a Fibonacci number Fn

plus a remainder m−Fn that is strictly smaller than Fn. We can then safely plug in the representation of
m− Fn as a sum of distinct Fibonacci numbers to obtain one for m. We now summarize these ideas into
a proof.

Proof. Call the positive integer m. We apply strong induction on m.
Base case: m = 1 is a Fibonacci number.
Inductive step: Assume every number from 1 to m − 1 is a sum of distinct Fibonacci numbers. If

m is a Fibonacci number we are done. If not, m is sandwiched between some two consecutive Fibonacci
numbers, namely Fn < m < Fn+1 for some n. The number m − Fn must be smaller than Fn because
m − Fn < Fn+1 − Fn = Fn−1 < Fn (the Fibonacci sequence is increasing). By the inductive hypothesis,
m − Fn can be represented as a sum of distinct Fibonacci numbers. As all of them are at most m − Fn

and therefore smaller than Fn, the representation

m = Fn + (representation of m− Fn)

is a representation of m as a sum of distinct Fibonacci numbers.

As our final example of strong induction consider the following game. You have n boxes initially all
stacked up. At each step you can take a stack and split it into two smaller stacks and pay the product of
their heights. For example, if you split a 4-box stack into two 2-box stacks you pay 2 × 2 = 4 dollars. If
you split it into a 3-box stack and a single box you pay 3× 1 = 3 dollars. What is the minimum you have
pay in order to split the stack into single boxes?

Let’s do an example with n = 4. You have two choices. One option is to split it into stacks of 3 and 1
boxes and pay 3× 1 = 3 dollars. The remaining 3-box stack must be split as 2 + 1 at a cost of 2× 1 = 2
dollars. Finally the remaining 2 boxes cost 1 × 1 = 1 dollar to unstack, for a total cost of 3 + 2 + 1 = 6
dollars.

The other option is to split the 4-stack box into 2 stacks of 2 boxes at a cost of 2× 2 = 4 dollars. Each
of these stacks must now be broken up into single boxes for 1 dollar. The total cost is 4+1+1 = 6 dollars
again. Regardless of your strategy you have to pay 6 dollars.

It is instructive to work out the case n = 5. You will conclude that regardless of your strategy you
must pay 10 dollars again. This suggests the following conjecture.

6

Conjecture 1. All possible strategies for unstacking n boxes cost the same.

We will prove this by strong induction on n. To do this proof it will be helpful to know how much it
actually costs to unstack n boxes. One possible strategy is to remove one box at a time for a total cost of
(n− 1) + (n− 2) + · · ·+ 1 = (n− 1)n/2. If our conjecture was correct, then the cost of all strategies for n
boxes would be (n− 1)n/2 = (n2 − n)/2.

Theorem 8. All possible strategies for unstacking n boxes cost (n2 − n)/2 dollars.

Proof. We apply strong induction on n. When n = 1 there is no stack and the cost is 0 = (1 − 1) · 1/2
dollars as desired. Now suppose the predicate is true for 1 up to n− 1 boxes. Given a stack of n boxes the
first move is to split it into a boxes and b boxes for some a and b that add up to n. This step costs a× b
dollars. No matter what a and b are, by our inductive hypothesis we know it costs (a2 − a)/2 dollars to
unstack the first stack and (b2 − b)/2 dollars to unstack the second one. The total cost is

ab+
a2 − a

2
+

b2 − b

2
=

(a2 + b2 + 2ab)− (a+ b)

2
=

(a+ b)2 − (a+ b)

2
=

n2 − n

2
.

3 State Machines and Invariants

In computer science you often encounter systems that evolve over discrete time according to some rules.
State machines provide a useful abstraction for describing such systems. A state machine is specified by a
set of states, a transition predicate q → r that says if the system is allowed to transition from state q to
state r, and a start state.

An invariant is a predicate of states that remains true over the lifetime of the state machine. Induction
allows us to prove invariants: To show the invariant holds, we prove it is satisfied in the initial state, and
that assuming it holds at time n, it also holds at time n + 1 for every n; namely, it is preserved by the
transitions.

Here is an example. You have a robot that can walk across diagonals on an infinite 2-dimensional grid.
Its coordinates at any given time are described by a pair of integer coordinates (x, y). In each time step,
the robot moves by exactly one unit left or right and by exactly one unit up or down. At time 0 robot
starts at position (0, 0). (Thus, at time 1, the robot will be in one of the four positions (−1,−1), (−1, 1),
(1,−1), (1, 1).) Can the robot ever reach position (1, 0)?

In this example, the motion of the robot can be described by a state machine whose states are pairs of
integers (x, y), whose transitions are described by the predicate

(x, y) → (x′, y′) if (x′ = x− 1 and y′ = y − 1) or (x′ = x− 1 and y′ = y + 1) or

(x′ = x+ 1 and y′ = y − 1) or (x′ = x+ 1 and y′ = y + 1),

and whose start state is the state (0, 0). The next theorem states that the predicate “x+ y is even” is an
invariant of this system:

Theorem 9. For every n, if the robot is at position (x, y) at time n, then x+ y is even.

Therefore the robot can never reach position (1, 0) because 1 + 0 is odd.

Proof. We prove the theorem by induction on n.
Base case n = 0: The start state is (0, 0) and 0 + 0 is even.
Inductive step: Assume that at time n, the robot is at position (x, y) and x+ y is even. Let (x′, y′)

be the position of the robot at time n+ 1. We will prove that x′ + y′ is even by case analysis:

• The robot moves left and down: Then x′ = x − 1, y′ = y − 1, so x′ + y′ = (x + y) − 2 – an even
number minus two, therefore even.

7

• The robot moves left and up: Then x′ = x− 1, y′ = y + 1, so x′ + y′ = x+ y, which is even.

• The robot moves right and up: Then x′ = x+1, y′ = y+1, so x′+ y′ = (x+ y)+2 – an even number
plus two, therefore even.

• The robot moves right and down: Then x′ = x+ 1, y′ = y − 1, so x′ + y′ = x+ y, which is even.

It follows by induction that the sum of the robot’s coordinates is always even.

Here is another, more challenging example. It is about the following puzzle. The starting configuration
is the one on the left. You are supposed to reach the configuration on the right. At each point, you are
allowed to move an adjacent tile into the unoccupied square.

1 2 3

4 5 6

8 7

1 2 3

4 5 6

7 8

We will show that this is not possible using an invariant. This invariant is trickier than the one in the
last problem. To explain it, we need two concepts.

We say tile a appears before tile b if tile a is in a higher row than tile b or if they are in the same row,
tile a is to the left of tile b. We say the pair of tiles {a, b} form an inversion if a > b and tile a appears
before tile b.

For example, in the final configuration there are no inversions. In the initial configuration, there is
exactly one inversion consisting of the pair {8, 7}. In the following configuration, the inversions are {3, 2},
{4, 2}, {5, 2}, {6, 2}, {7, 2}, {6, 3}, {6, 4}, {7, 4}, {6, 5}, and {7, 5}.

1 6 3

7 4

25 8

We will show the following invariant:

Theorem 10. The number of inversions is always odd.

Proof. We prove the theorem by induction on n.
Initial configuration: In the initial configuration, there is exactly one inversion – the pair {8, 7}. So

initially the number of inversions is odd.
Transitions: Assume that before a transition the number of inversions is odd. We will show that the

same is true after the transition. The transition can be a row move (a tile moves to the left or to the right)
or a column move (a tile moves up or down). The proof is by case analysis.

• If the transition is a row move, then the relative order of any pair of tiles stays the same, so the
number of inversions stays the same. Therefore it is odd after the transition.

• If the transition is a column move, then the only pairs of tiles whose relative order changes are the
pairs {m, b1} and {m, b2}, where m is the tile that was moved and b1 and b2 are the tiles between m
and the empty space.

8

Now we consider three subcases. If both of these pairs were inversions before the transition, then
neither of them remains an inversion after, so the number of inversions decreases by 2. If one of them
was an inversion but not the other, then their inversion role changes but the number of inversions
stays the same. If neither was an inversion, then they both become inversions, so the number of
inversions increases by 2. In any case, the number of inversions changes by an even amount, so it
must stay odd.

In the final configuration, the number of inversions is even. By Theorem 10, the final configuration can
never be reached.

4 Concurrency*

Concurrency is the study of computer programs that run in parallel but have access to a shared resource
like memory. In such settings it is usually assumed that each program runs its instructions in sequence, but
different programs can interleave their instructions in arbitrary ways. The objective is to design programs
that accomplish some cooperative task regardless of the order in which their instructions are interleaved.

To get a sense of the issues that arise in concurrent programming let’s do an example. Say Alice and
Bob run an e-shipping company. Alice’s job is to go around the internet and collect e-boxes. When she
has collected at least ten e-boxes, Bob shows up to the scene and takes them away for e-delivery. Alice’s
program might look something like this:

Alice’s code:
1 scavenge the internet for e-boxes
2 if new e-box found:
3 e boxes = e boxes+ 1

Bob’s code:
1 if e boxes ≥ 10

2 e boxes = e boxes− 10
3 e-deliver the ten e-boxes

To figure out how a concurrent execution of Alice’s and Bob’s programs look like we must make some
assumptions about which operations constitute a “single step” in these programs. Such operations are called
events. We will assume that reading a variable (from shared memory into a private register) is an event
and writing a variable is also an event, but a consecutive read-write operation like e boxes = e boxes+ 1
is not an event.1

Then the following undesirable behaviour can happen. Bob spots that the pile has grown to 10 e-boxes,
so he decides to take them for e-delivery. While he is in the process of updating an e-box count, a new
e-box is brought in by Alice:

program event e boxes

initially 10
Bob read e boxes (line 2) 10
Alice read e boxes (line 3) 10
Alice write e boxes (line 3) 11
Bob write e boxes (line 2) 0

The e-box that Alice brought in the middle of Bob’s read/write operation has vanished into thin air! In
order for this concurrent program to work as desired, we would like Alice’s third line of code and Bob’s
second line of code to execute as if they were single events. One common mechanism for this is locking.
Certain parts of the code are designated as critical sections and it is ensured that critical sections satisfy
mutual exclusion: Alice and Bob cannot be both executing their critical sections concurrently. Is it possible
to implement mutual exclusion using only read events and write events?

1The validity of this assumption depends on the workings of the compiler and the computer architecture that these programs
are running on. Many compilers do not even guarantee sequential execution of a stand-alone program like Bob’s as they may
re-order instructions in order to optimize the code.

9

Mutual exclusion and state machines Let’s try the following. Alice has a boolean variable Awants

that indicates her desire to do critical work. Before entering its critical section, Alice checks that Bob is
not interested in critical work himself and proceeds only if this is the case. Bob does the same with respect
to Alice:

Alice’s code:
1 Awants = True

2 while Bwants :
wait

3 do critical work
Awants = False

Bob’s code:
1 Bwants = True

2 while Awants :
wait

3 do critical work
Bwants = False

Initially, Awants and Bwants are both false. One method for understanding how these two programs
interact is to model their concurrent execution as a state machine. The states are specified by the memory
contents together with the values of Alice’s and Bob’s program counters (PCs). In this example, the state
machine is small enough so that we can represent the portion induced by the reachable states graphically:

1 F

1 F

2 T

1 F

3 T

1 F

1 F

2 T

2 T

2 T

3 T

2 T

1 F

3 T

2 T

3 T

A

B

A

B

A

B

A

B

B

A

A
B

B

A

A, B

A, B

B B

A

A

The two rows refer to Alice’s and Bob’s program state, respectively. Transitions are labeled by the
program(s) that trigger them. For example, in the top right state, Alice’s program is just about to execute
line 3 (and Awants is true), while Bob hasn’t started running his program (and Bwants is false). There are
three labeled transitions after this state that correspond to Alice executing her line 3, Bob executing his
line 1, and Bob idling just before line 1. In this model each party can execute its program arbitrarily often
(states representing PC value 3 transition back to those with PC value 1) and also idle for an arbitrary
number of steps before executing, if ever (states with PC value 1 have self-loops).

The condition “both programs are not in their critical section at the same time” means that Alice’s
and Bob’s PCs cannot have value 3 at the same time. In state machine notation, none of the states

3 T

3 T

3 T

3 F

3 F

3 T

3 F

3 F

should be reachable from the start state. This is indeed the case. There is, however, another problem:
The concurrent execution can deadlock in the middle state 2T, 2T. If the programs reach this state their
execution cannot proceed. This happens when Alice and Bob indicate their desire to go (they both execute
their respective line 1) one right after the other.

10

In the hope of avoiding deadlock let us attempt a different solution: Alice and Bob maintain a shared
variable called turn. When Alice wants to do critical work, she assigns turn to Bob. When Alice gets back
her turn, she enters her critical section.

Alice’s code:
1 turn = Bob

2 while turn == Bob :
wait

3 do critical work

Bob’s code:
1 turn = Alice

2 while turn == Alice :
wait

3 do critical work
The concurrent execution of the two programs is described by the following state machine with transition

labels. Here, the diagonal entries of the state indicate Alice’s and Bob’s PC and the remaining one is the
value of the turn variable.

1 ?

1
2 B

1
2 A

2

1 A

2
3 A

2

2 B

2
2 B

3

A

B

B

A, B

A

A, B

A

B

B
A

A
B

B

A

A, B

This implementation also satisfies the mutual exclusion property of state machines: No state in which both
PCs have value 3 is reachable from the start state. However it also deadlocks: If Bob is not interested
in doing critical work, Alice cannot ever make it to her critical section. This behavior occurs in the top
middle state of the diagram. If Bob keeps revisiting this state indefinitely, Alice can never make progress.

Peterson’s algorithm Our two attempted solutions to mutual exclusion are both prone to deadlock.
The conditions under which deadlock occurs, however, are complementary in the two algorithms. In the
first case, deadlock may happen when both Alice and Bob want to do critical work at the same time. In
the second case, deadlock occurs when one of the parties is idle (not interested in doing critical work). The
following algorithm combines the ideas behind the two into a single deadlock-free solution:

Peterson’s algorithm

Alice’s code:
1 Awants = True

2 turn = Bob

3 while Bwants and 4 turn == Bob :
wait

5 do critical work
Awants = False

Bob’s code:
1 Bwants = True

2 turn = Alice

3 while Awants and 4 turn == Alice :
wait

5 do critical work
Bwants = False

11

As before, the concurrent execution of the programs can be represented by a state machine with labelled
transitions. This state machine is, however, slightly too large to draw by hand with confidence. We could
use the computer to convert our code into a (finite) state machine and verify that all states in which mutual
exclusion fails are unreachable. Instead, we will reason out the mutual exclusion property by semantic code
analysis.

Theorem 11. There does not exist a concurrent execution of Peterson’s algorithm in which Alice and Bob
are in the critical section (i.e., both their PCs have value 5) simultaneously.

Proof. Assume, for contradiction, that both Alice and Bob are in the critical section at some point in time
t. We consider two cases depending of which party was the last one to write to the turn variable before
time t.

If this party was Alice, it means that Alice’s condition 4 turn == Bob was satisfied before she entered
her critical section. It means that Alice must have observed Bwants to be false just before she entered her
critical section in her line 5. Bob’s program must have been waiting in line 1 at this point. So part of the
execution must have happened in this order:

1. Alice executes line 3 and reads Bwants value False.

2. Bob possibly executes part of his program starting in line 1.

3. Alice executes line 5 and enters her critical section.

4. Bob possibly executes more lines of his program.

5. Alice leaves her critical section.

Once Bob reaches line 3 of his program he must find that Awants is true (since Alice’s program is somewhere
between lines 3 and 5) and that turn equals Alice (since he just set it to that value in his line 2 and Alice
did not modify its value in her lines 3-5). It follows that Bob has not entered his critical section while Alice
is inside hers, contradicting our assumption.

If, on the other hand, Bob was the last party to write to turn before time t, then the situation is
completely identical with the roles of Alice and Bob reversed, so we reach a contradiction by the same
reasoning.

As you can see, correctness proofs for concurrent executions can be quite tricky. What about deadlock?
If you play with the programs for a bit you will find that there is no obvious ways to make them deadlock.
So it is sensible to conjecture that Peterson’s algorithm is in fact deadlock-free. But what does deadlock-
freeness even mean in the language of propositional logic?

For simplicity let us work with a stronger property called starvation-freeness. (The difference is some-
what technical so I won’t explain it.) Intuitively, starvation-freeness means that Alice will eventually get
to do her critical work provided that she wants to. So now we have to explain what “eventually” means.

One condition we must impose is that Bob does not abort his execution, for instance in the middle of
his critical work. In such circumstances, mutual exclusion prevents Alice from ever making it to her own
critical section. Similarly, we should discount executions in which Alice aborts at some point in time.

Definition 12. An infinite sequence of transitions is non-aborting if it contains infinitely many transitions
labeled by Alice and infinitely many transitions labeled by Bob.

Non-aborting does not mean that, say, Alice’s program has to run infinitely often; her infinite sequence
of transitions may all represent idle transitions waiting for her to execute line 1.

Definition 13. Let P be a predicate of states. We say that P eventually holds if every non-aborting
sequence of transitions visits a state in which the predicate holds (starting from some fixed initial state).

12

We can now state and prove that Peterson’s algorithm is starvation-free for Alice:

Theorem 14. If Alice’s PC has value 2 in any execution of Peterson’s algorithm (she has just expressed
interest in critical work), Alice’s PC will eventually reach value 5 (she will enter her critical section).

Proof. If Alice’s PC has value 2 but does not eventually reach value 5, Alice must be running the loop
3-4 infinitely many times in sequence. Throughout the execution of this loop, Awants and Bwants must
both be true and turn must equal Bob. Since Bob does not abort, he must execute infinitely many of
his own transitions during this period. Since it is Bob’s turn, Bob cannot be idling in his loop 3-4. If
he is idling in line 1, then Bwants must be false and Alice will eventually exit her loop 3-4 and enter her
critical section. Otherwise, Bob will eventually reach line 2, yield turn to Alice, and execute his loop 3-4.
At this point Alice’s condition 4 fails so she eventually moves on to her critical section, contradicting our
assumption.

Rigorous reasoning about concurrent programs is challenging and error-prone. There is a type of logic
called linear temporal logic that talks about the evolution of state machines and is particularly suitable
for expressing properties such as mutual exclusion and starvation-freeness. There are also algorithms that,
given a state machine with transition labels (called a Büchi automaton) and a formula in linear temporal
logic, decides if the formula is true for every execution of the state machine. (It is not a priori clear why
such an algorithm should exist as it needs to verify a condition for a potentially infinite set of infinite
sequences.) Such tools can in principle be used to automatize proofs of propositions like Theorem 11 and
Theorem 14, as long as the set of states is finite. The SPIN verification software provides a practical
implementation of such an algorithm together with a tool that converts concurrent program specifications
into state machines.

References

This lecture is based on Chapters 5 and 6 of the text Mathematics for Computer Science by E. Lehman, T.
Leighton, and A. Meyer. Material from slides by Prof. Lap Chi Lau were also used in the preparation. The
section on Concurrency is partially based on Chapter 2 of the book The Art of Multiprocessor Programming
by Maurice Herlihy and Nir Shavit.

13

https://en.wikipedia.org/wiki/Buchi_automaton
http://spinroot.com/spin/whatispin.html

	More proofs by induction
	Strong induction
	State Machines and Invariants
	Concurrency*

