
CSI 2101: Discrete Structures Lecture 6
University of Ottawa, Winter 2024

A perfect binary tree of depth d is a tree constructed like this:

• A tree of depth zero consists of a single vertex called the root.

• A tree of depth d+1 is obtained by taking two perfect binary trees T1 and T2 of depth d, a new root
r, and adding edges from r to the roots of T1 and T2.

Here are the perfect binary trees of depth 0, 1, and 2:

How many vertices N(d) does a perfect k-ary tree of depth d have? When d ≥ 1, there is one vertex
for the two subtrees of depth d− 1, plus the root vertex. This gives the formula

N(d) = 2 ·N(d− 1) + 1

for d ≥ 1, with the “base case” N(0) = 1. Plugging in small values of d, this gives

N(1) = 2 ·N(0) + 1 = 2 + 1

N(2) = 2 ·N(1) + 1 = 2(2 + 1) + 1 = 22 + 2 + 1

N(3) = 2 ·N(2) + 1 = 2(22 + 2 + 1) + 1 = 23 + 22 + 2 + 1.

In general, N(d) = 2d + 2d−1 + · · ·+ 1. This type of sum is called a geometric sum.

1 Geometric sums

We can evaluate a sum of the form
S = xd + xd−1 + · · ·+ 1

for every real number x and positive integer d like this: If we multiply both sides by x, we obtain

xS = xd+1 + xd + · · ·+ x

If we now subtract the first expression from the second one, almost all the right hand sides terms cancel
out:

xS − S = xd+1 − 1

which simplifies to (x− 1)S = xd+1 − 1. When x ̸= 1, we can do a division and obtain the formula

xd + xd−1 + · · ·+ 1 =
xd+1 − 1

x− 1
for every real number x ̸= 1.

A sum of this form is called a geometric sum.
So the number of vertices in a perfect k-ary tree of depth d is (kd+1 − 1)/(k − 1). In particular, for a

perfect ternary tree, this number is (3d+1 − 1)/2. A perfect binary (2-ary) tree of depth d has 2d+1 − 1
vertices.

1

Annuities

You won a prize and you have two options for the prize money. Option A is that you are paid $5000 per
year for the rest of your life. Option B is that you are paid $80000 today. Which one would you choose?

To answer this question we need to model how the value of money changes over time. If you keep your
money in the bank at no interest then option A will pay off for you in twenty years time. If, on the other
hand, you want to throw a lavish party right now then option B would make more sense for you. Now
suppose that, as a savvy investor, you are quite confident in making a reliable return of p = 7% per year.
How show this affect your choice?

To answer this question we’ll calculate how much option A is worth in today’s money. The 5K that
you will be getting in your zeroth year are worth... well, 5K. For next year’s 50K you can reason like this.
If you had invested x dollars this year, they would be worth (1 + p)x dollars next year. So today’s value
of next year’s 5K dollars is the amount x for which (1 + p)x = 5K, namely x = 5K/(1 + p). By the same
reasoning, the 5K you would be getting in two years’ time are worth 5K/(1 + p)2 today. Continuing this
reasoning, you conclude that the value of option A in today’s money is

5K +
5K

1 + p
+

5K

(1 + p)2
+ · · ·

By the geometric sum formula, the contribution from years zero up to d equals

5K · 1/(1 + p)d+1 − 1

1/(1 + p)− 1

In the large n limit, the term 1/(1+ p)d+1 vanishes and the value converges to 5K · (1+ p)/p. For p = 7%,
the value of option A is about $76, 429. So option B is better.

Here is another way to see the wisdom of option B over option A without evaluating the geometric
sum. With a budget of 80K, I can always take out x dollars for spending this year and invest the remaining
80K− x dollars aiming to grow them back to 80K by next year. To do this, I need to choose x so that

(1 + p) · (80K− x) = 80K,

which solves to

x = 80K ·
(
1− 1

1 + p

)
= 80K · p

1 + p
.

When p equals 7% we get that x is about 5234 dollars. This improves on the annual 5K in option A.

2 Polynomial sums

In Lecture 3 we proved that

1 + 2 + · · ·+ n =
n(n+ 1)

2

for every integer n ≥ 0. How did I come up with the expression on the right? Instead of going back to
something we already know, let’s work out a new one:

What is 12 + 22 + · · ·+ n2?

We have to do some guesswork. The sum 1+2+· · ·+n was a quadratic function in n, perhaps 12+22+· · ·+n2

might equal some cubic? Let’s make a guess: For all n, there exist real numbers a, b, c, d such that

12 + 22 + · · ·+ n2 = an3 + bn2 + cn+ d.

2

Suppose our guess was correct. Then what are the numbers a, b, c, d? We can get an idea by evaluating
both sides for different values of n:

0 = d for n = 0

1 = a+ b+ c+ d for n = 1

5 = 8a+ 4b+ 2c+ d for n = 2

14 = 27a+ 9b+ 3c+ d for n = 3.

I solved this system of equations on the computer and obtained a = 1/3, b = 1/2, c = 1/6, d = 0. This
suggests the formula

12 + 22 + · · ·+ n2 = 1
3n

3 + 1
2n

2 + 1
6n

for all integers n ≥ 0. Let us see if we can prove its correctness by induction on n.
We already worked out the base case n = 0, so let us do the inductive step. Fix n ≥ 0 and assume that

the equality holds for n. Then

12 + 22 + · · ·+ (n+ 1)2 =
(
1
3n

3 + 1
2n

2 + 1
6n

)
+ (n+ 1)2 = 1

3n
3 + 3

2n
2 + 13

6 n+ 1.

This indeed equals 1
3(n+ 1)3 + 1

2(n+ 1)2 + 1
6(n+ 1). So we have discovered and proved a new theorem:

Theorem 1. For every integer n ≥ 0, 12 + 22 + · · ·+ n2 = 1
3n

3 + 1
2n

2 + 1
6n.

3 Approximating sums

Exact “closed-form” expressions for sums are rather exceptional. Often we have to resort to approximations.
As an example, let us look at the sum

S(n) =
√
1 +

√
2 + · · ·+

√
n.

What can we say about this sum? At the very least, we can say that it is always non-negative, namely
S(n) ≥ 0 for all n. We can also say that each of the individual terms does not exceed

√
n, so the sum can

be at most n ·
√
n = n3/2:

0 ≤
√
1 +

√
2 + · · ·+

√
n ≤

√
n+

√
n+ · · ·+

√
n = n ·

√
n ≤ n3/2.

We can therefore be sure that the sum is always “sandwiched” between 0 and n3/2:

0 ≤ S(n) ≤ n3/2 for all n.

This is an example of an approximation: It tells us, for example, that S(100) is between 0 and 1000 and
S(1000) is between 0 and 10003/2 ≈ 31623.

This approximation is not very informative leaves a large range of possibilities for the value of S(n).
We can narrow down the range by working harder. An effective method works by comparing the sum with
a related integral.

The value S(n) can be visualized as the joint area of n bars R1, . . . , Rn where Rx has base (x − 1, x)
and height

√
x. For example, S(5) equals the area covered by the shaded bars (both light and dark shades)

in this plot:

0 1 2 3 4 5
x

√
x

3

The area under the bars can be lower bounded by the area (i.e., the integral) of the curve f(x) =
√
x from

x = 0 to x = n:

S(5) ≥
∫ 5

0

√
x dx.

If we remove the area L covered by the lightly shaded bars, the darker shaded area is now dominated by
the curve f(x) =

√
x and so

S(5)− L ≤
∫ 5

0

√
x dx.

The area under L is exactly
√
5: If we stack all of the lightly shaded bars on top of one another, we obtain

a column of width 1 and height
√
5. Therefore∫ 5

0

√
x dx ≤ S(5) ≤

∫ 5

0

√
x dx+

√
5.

By the same reasoning, for every integer n ≥ 1, we have the inequalities∫ n

0

√
x dx ≤ S(n) ≤

∫ n

0

√
x dx+

√
n.

We can now use rules from calculus to evaluate the integrals: Recalling that x1/2 = d
dx

2
3x

3/2, it follows
from the fundamental theorem of calculus that

2

3
n3/2 ≤ S(n) ≤ 2

3
n3/2 +

√
n.

To get a feel for these inequalities, let us plug in a few values of n. (I calculated S(n) by evaluating the
sum on the computer.)

n 2
3n

3/2 S(n) 2
3n

3/2 +
√
n

10 21.082 22.468 24.244
100 666.67 671.46 676.67

1, 000 21, 081.9 21, 097.5 21, 113.5
10, 000 666, 666 666, 716 666, 766

As n becomes large, the accuracy of these approximations looks quite good.

4 Overhang

You have n identical rectangular blocks and you stack them on top of one another at the edge of a table
like this:

table

Is this configuration stable, or will it topple over?
In general, a configuration of n blocks is stable if for every i between 1 and n, the center of mass of the

top i blocks sits over the (i + 1)st block, where we think of the table as the (n + 1)st block in the stack.
For example, the top stack is not stable because the center of mass of the top two blocks does not sit over
the third block:

4

We want to stack our n blocks so that the rightmost block hangs as far over the edge of the table as
possible. What should we do? One reasonable strategy is to try to push the top blocks as far as possible
away from the table as long as they do not topple over.

We will assume each block has length 2 units and we will use xi to denote the offset of the center of
the i-th block (counting from the top) from the edge of the table:

i-th block

xi

The offset of a block can be positive, zero, or negative, depending on the position of its center of mass.
For the top block not to topple over, its center of mass must sit over the second block. To move it as

far away from the edge of the table as possible, we should move its center exactly one unit to the right of
the center of the second block:

x2

x1

This forces the offsets x1 and x2 to satisfy the equation

x1 = x2 + 1. (1)

How about the third block? The center of mass of the first two blocks is at offset (x1 + x2)/2 from the
edge of the table. To push this as far to the right as possible without toppling over the third block

(x1 + x2)/2

x3

we must set
x1 + x2

2
= x3 + 1. (2)

Continuing our reasoning in this way, for every i between 1 and n, the offset of the center of mass of the
top i blocks is (x1 + · · ·+ xi)/i. To push this as far to the right without toppling over the (i+ 1)st block,
we must set

x1 + x2 + · · ·+ xi
i

= xi+1 + 1 for all 1 ≤ i ≤ n. (3)

Finally, when i = n+ 1, we have reached the table whose offset is zero. Since we are thinking of the table
as the (n+ 1)st block, its centre of mass is one unit left to its edge:

xn+1 = −1. (4)

The overhang of the set of blocks is x1 + 1. To figure out what this number is, we need to solve for x1 in
the system of equations (3-4). Let us develop some intuition first. Equation (1) tells us that x2 = x1 − 1.
Plugging in this formula for x2 into (2), we get that

x3 = x1 −
1

2
− 1.

Let’s do one more step. Equation (3) tells us that (x1 + x2 + x3)/3 = x4 +1. Plugging in our formulas for
x2 and x3 in terms of x1 we get that

x1 + (x1 − 1) + (x1 − 3
2)

3
= x4 + 1

5

from where

x4 = x1 −
1 + 3

2

3
− 1 = x1 −

1

3
− 1

2
− 1.

At this point it is reasonable to guess that xi+1 should equal x1 minus the sum

1 +
1

2
+

1

3
+ · · ·+ 1

i
.

Let us prove that this guess is correct.

Lemma 2. For all i between 1 and n, xi − xi+1 = 1/i.

Proof. If we multiply both sides of the i-th equation (3) by i we obtain

x1 + x2 + · · ·+ xi−1 + xi = i · (xi+1 + 1).

Under this scaling the (i− 1)st equation is

x1 + x2 + · · ·+ xi−1 = (i− 1) · (xi + 1).

Subtracting the two we obtain that

xi = i(xi+1 − 1)− (i− 1)(xi − 1) = ixi+1 − (i− 1)xi + 1

from where, after moving the variables around, we conclude that

xi = xi+1 +
1

i
.

It follows immediately from this Lemma that

x1 − xn+1 = (x1 − x2) + (x2 − x3) + · · ·+ (xn+1 − xn) = 1 +
1

2
+ · · ·+ 1

n
.

Since xn+1 = −1, the overhang x1 + 1 equals exactly this number, which is called the n-th harmonic
number and is denoted by H(n). There is no closed-form expression for H(n), but we can obtain an
excellent approximation using the integral method. To do this, we compare H(n) with the integral of the
function 1/x:

1 2 3 4 5 6
x

1/x

By similar reasoning as before, the sum H(n) = 1+ 1/2+ . . . 1/n is given by the area of the first n shaded
bars. This area is larger than the integral of 1/x from 1 to n+ 1:

H(n) ≥
∫ n+1

1

1

x
dx.

On the other hand, if we subtract from H(n) the area of the lightly shaded bars, then the integral becomes
larger. This area equals 1− 1/(n+ 1):

H(n)− 1 +
1

n+ 1
≤

∫ n+1

1

1

x
dx.

6

Combining this two inequalities gives the approximation∫ n+1

1

1

x
dx ≤ H(n) ≤

∫ n+1

1

1

x
dx+ 1− 1

n+ 1
.

The antiderivative of 1/x is lnx. By the fundamental theorem of calculus it follows that

ln(n+ 1) ≤ H(n) ≤ ln(n+ 1) + 1− 1

n+ 1
. (5)

The left hand side of this inequality tells us that our method of stacking blocks achieves overhang at least
ln(n+ 1). The logarithm function is unbounded; given enough blocks, we can grow our stack all the way
to New York!

5 Order of growth

Theorem 1 gives us an exact formula for the sum of the first n squares: It equals 1
3n

3+ 1
2n

2+ 1
6n. Sometimes

precise like this one give us too much information. For example, say we want to know which of these two
numbers is bigger:

A = 1 + 2 + · · ·+ 10000 or B = 12 + 22 + · · ·+ 10002?

In other words, we want to compare the numbers

A = 1
2n

2 + 1
2n when n = 10000 = 104 and B = 1

3m
3 + 1

2m
2 + 1

6m when m = 1000 = 103.

When n and m are large, the two expressions are “dominated” by their leading terms 1
2n

2 and 1
3m

3, which
evaluate to 1

2(10
4)2 = 0.5 · 108 and 1

3(10
3)3 ≈ 0.33 · 109. The second one is an order of magnitude larger,

which suggests that B should be the bigger number. Indeed, B is bigger than A by the same order of
magnitude:

A = 50, 005, 000 = 1.0001 · 1
2(10

4)2 and B = 333, 833, 500 ≈ 1.002 · 1
3(10

3)3.

This example suggests that when comparing expressions like 1
2n

2 + 1
2n and 1

3m
3 + 1

2m
2 + 1

6m, what really
matters are the leading terms 1

2n
2 and 1

3m
3, or even more crudely just n2 and m3.

There is a special notation for expressing “the relevant part of a function” when the input is large. To
understand how it works let’s think about what “the relevant part of 1

3n
3 + 1

2n
2 + 1

6n is n3 for large n”
should mean. It means two things: that the actual value is never much larger than n3, and that is also
never much smaller than n3. We’ll start with the “not much larger” part.

Big-oh

Definition 3. For two real-valued functions f and g (defined over the positive reals, or over the positive
integers), we say f is O(g) (big-oh of g) if there exists a constant C > 0 such that for every sufficiently
large input x, f(x) ≤ C · g(x).

For example, 1
3n

3 + 1
2n

2 + 1
6n is O(n3) because 1

3n
3 + 1

2n
2 + 1

6n ≤ n3 + n3 + n3 ≤ 3n3 when n is large
(specifically, at least 1).

In Section 3 we showed that
√
1 + · · · +

√
n ≤ 2

3n
3/2 +

√
n. By the same reasoning we can say that√

1 + · · ·+
√
n is O(n3/2) because 2

3n
3/2 +

√
n ≤ n3/2 + n3/2 ≤ 2n3/2 (when n ≥ 1).

This type of reasoning leads to the following general rule: Every polynomial (even one with fractional
exponent) is big-oh of its leading monomial.

7

In Section 4 we showed that 1 + 1/2 + · · · + 1/n ≤ ln(n + 1) + 1 − 1/(n + 1). What is the “leading
term” in big-oh notation here? We can say that

ln(n+ 1) + 1− 1/(n+ 1) ≤ ln(2n) + 1− 1/(n+ 1) = lnn+ ln 2 + 1− 1/(n+ 1).

When n is large (say bigger than 2) then ln 2 and 1 are both at most lnn so the whole expression is O(lnn).
The base of the logarithm is irrelevant in big-oh notation as it changes the value by a multiplicative constant,
so we can say that lnn + ln 2 + 1 − 1/(n + 1) is O(log n). In computer science, the “default” base of the
logarithm is two.

In fact, the log of any polynomial in n is O(log n). For example,

log(16n5 + 3n+ 11) ≤ log(16n5 + 3n5 + 11n5) ≤ log(30n5) ≤ log(n6) ≤ 6 log n.

One important property of big-oh is that it is transitive: If f is O(g) and g is O(h) then f is O(h). For
example, n3 is O(n4) (because n3 ≤ n4 when n ≥ 1), so 1

3n
3+ 1

2n
2+ 1

6n is also O(n4). Thus big-oh provides
an upper bound on asymptotic growth, but does not “pin down” the exact rate. That is accomplished by
big-theta.

Big-theta

Big-Theta says that two functions have the same order of growth:

Definition 4. We say f is Θ(g) if f is O(g) and g is O(f).

We saw that 1
3n

3 + 1
2n

2 + 1
6n is O(n3). We can also say that n3 is O(13n

3 + 1
2n

2 + 1
6n) because

n3 ≤ 3 · 1
3n

3 ≤ 3 · (13n
3 + 1

2n
2 + 1

6n). We can therefore conclude that 1
3n

3 + 1
2n

2 + 1
6n is Θ(n3).

We also saw that S(n) =
√
1+ · · ·+

√
n is O(n3/2). Is n3/2 also O(S(n))? As S(n) ≥ 2

3n
2/3, indeed we

get that n2/3 ≤ 2
3S(n) which is O(S(n)). Therefore S(n) is O(n3/2).

By similar logic we can say that

A polynomial is big-theta of its leading term.

So is every function that is sandwiched between two polynomials with the same leading term.
The big-theta definition says that both f(x) ≤ Cg(x) and g(x) ≤ Cf(x) for some constant C when x

is sufficiently large, from where
C−1g(x) ≤ f(x) ≤ Cg(x).

Namely, f is sandwiched between a small and a large multiple of g.
Therefore log(n3 + 16n) is logΘ(n3), which is Θ(log n): The function n3 + 16n is sandwiched between

C−1n3 and Cn3 for large n, so log(n3 + 16n) is sandwiched between 3 log n+ logC−1 and 3 log n+ logC.
Both are Θ(log n). By the same logic,

The log of any polynomial in n is Θ(log n).

Big-theta is transitive and symmetric (f is Θ(g) iff g is Θ(f)) so it is an equivalence relation: It splits
all functions into “classes” in which every function is big-theta of every other. For example, 1

2n
2 + 1

2n,
0.1n2 − 10n, and n2 are all big-theta of one another. The objective of big-theta notation is to express
complicated functions in terms of more basic ones, so if we had to pick a big-theta representative among
these n2 would be the most sensible choice.

In computer science the most basic functions are the powers na (e.g., n, n2,
√
n), exponentials Bn (e.g.,

2n, en, 2−n), and the logarithm log n. Not every function can be represented as big-theta of these. As
we will see shortly, (log n)2 grows strictly faster than log n but strictly slower than any power na. To
understand why we need the last piece of asymptotic notation.

8

Little-oh

The little-oh notation says that asymptotically, one function grows at a significantly slower rate than
another one.

Definition 5. For two real-valued functions f and g, we say f is o(g) (little-oh of g) if for every constant
c > 0 and every sufficiently large input x, f(x) ≤ c · g(x).

If f is o(g), then f is also O(g), but not necessarily the other way. For example, 1
2n

2+ 1
2n is O(n2), but

it is not o(n2) because as n gets large, (12n
2 + 1

2n) is not less than, say,
1
4n

2. On the other hand, 1
2n

2 + 1
2n

is o(n3) because 1
2n

2 + 1
2n ≤ n2 = (1/n) · n3 and as n becomes large, 1/n is smaller than any constant c.

By similar reasoning,

na is o(nb) if a < b.

More generally, every degree-a polynomial p(n) is o(nb) if a < b.
Little-oh is transitive and asymmetric: If f is o(g), then g is not o(f). Owing to these features, little-

oh orders all (sufficiently nice) functions in terms of their asymptotic growth. For example,
√
n, n2, and

n+ log n are ordered as
√
n, n+ log n, n2 because

√
n is o(n+ log n) which is in turn o(n2).

Big-oh, big-theta, and little-oh are the asymptotic analogues of “less than or equal”, “equal”, and
“strictly less than”. The reasoning we use when ordering numbers applies to ordering functions as well.
For example, we can say that because n + log n is Θ(n) and

√
n is o(n),

√
n must also be o(n + log n).

Specifically, when we want to order a sequence of functions it is legitimate to replace each with its simplest
big-theta representative.

One incomplete but often successful method for figuring out the relative order of growth of f and g is
to take the limit of the ratio f(x)/g(x) as x tends to infinity. Assuming this limit exists we can say that

f is O(g) if limx→∞ f(x)/g(x) < ∞,

f is Θ(g) if 0 < limx→∞ f(x)/g(x) < ∞,

f is o(g) if limx→∞ f(x)/g(x) = 0

So 17n4 + 5n3 is Θ(n4) because (17n4 + 5n3)/n4 tends to 17 in the limit, while n3/2 is o(n2) because
n3/2/n2 = 1/

√
n tends to zero in the limit. In particular, exponentials are strictly ordered by their basis

Bn is o(Cn) when 0 < B < C

because Bn/Cn = (B/C)n is an exponential of base less than one, so it tends to zero in the limit.
To summarize the asymptotic growth of “simple” functions, powers are little-oh ordered in increasing

exponent, exponentials are little-oh ordered in increasing basis, and logarithms are big-theta equivalent to
one another. What is the relative ordering of logarithms, powers, and exponentials?

Exponential growth

Theorem 6. For all constants a, b > 0, (log x)a is o(xb).

In the proof we may assume that the logarithm is a natural logarithm because log x is Θ(lnx).

Proof. When a = 1, we can calculate limx→∞(lnx)/xb using L’Hôpital’s rule from calculus. Both numerator
and denominator grow to infinity, but this is not true for their derivatives: d

dx lnx = 1/x, while d
dxx

b =
bxb−1. The ratio of these two numbers is 1/(bxb), which tends to zero as x grows. Therefore

limx→∞
lnx

xb
= limx→∞

1

bxb
= 0

and so log x ≤ cxb for every constant c > 0 and sufficiently large x.

9

Now let a > 0 be arbitrary and c > 0 be an arbitrary constant. By what we just proved,

lnx ≤ c1/axb/a

for x sufficiently large, from where
(lnx)a ≤ (c1/axb/a)a ≤ cxb

for x sufficiently large.

This theorem says that
√
x outgrows (lnx)2 when x is large. Here is a plot of the two functions:

2 4 6 8 10

1

3

5

√
x

(lnx)2

It looks like the log takes a lead around x = 4. The lead eventually disappears:

0 5000 10000

50

100
√
x

(lnx)2

If we set x = ey and B = eb, we get the following corollary:

Corollary 7. For all constants a > 0 and B > 1, ya is o(By).

In conclusion, we now know how to little-oh order the basic functions: The logarithm, then all powers
in increasing order of exponent, then all exponentials in increasing order of basis. Using this we can reason
out the relative order of other functions.

Example How are the functions 2x, 2x
2
, x2, xx ordered in terms of their asymptotic growth?

By Corollary 7 we know that x2 is both o(2x) and o(2x
2
). How do 2x and 2x

2
compare to each other?

As x is o(x2) we would expect that 2x should also be o(2x
2
). In fact the ratio 2x/2x

2
equals 2x−x2

and this
goes to zero as the exponent x− x2 tends to −∞. So we know that

x2 is o(2x) and 2x is o(2x
2
).

Where does xx fit in? To answer this it is usually a sensible strategy to identify whether xx is a polynomial
or an exponential-type function. In this example xx grows faster than x, x2, x100 and any polynomial
in x, so x2 is certainly o(xx). To compare xx against 2x and 2x

2
it is sensible to rewrite it as a base-2

exponential, namely xx = 2x log x. Now we see that x is o(x log x) and x log x is o(x2) so xx should fit
between 2x and 2x

2
:

x2 is o(2x), 2x is o(xx), and xx is o(2x
2
).

10

A warning about asymptotic notation It is customary to abuse the equality sign when talking about
order of growth. In books you often see “f = O(g)” instead of “f is O(g)”. Technically, this is incorrect
because f and O(g) are objects of different types: f is a single function while O(g) is not. It is okay to use
this notation as long as you are aware of what it means. What you should not do is write “equations” like

1 + 2 + · · ·+ n = O(1) +O(1) + · · ·+O(n) = (n− 1) ·O(1) +O(n) = O(n)

because it is not clear what they mean and may lead to incorrect conclusions.

References

This lecture is based on Chapter 13 of the text Mathematics for Computer Science by E. Lehman, T.
Leighton, and A. Meyer. The variant of the integral methods described in the textbook is slightly different
from the one in these notes.

Surprisingly, if we allow for the blocks to be stacked not only on top of one another but also side by
side, the overhang can be much improved. If you are interested, see the amazing work Overhang by Mike
Paterson and Uri Zwick.

11

http://arxiv.org/abs/0710.2357

	Geometric sums
	Polynomial sums
	Approximating sums
	Overhang
	Order of growth
	Asymptotics of the factorial
	The trapezoidal rule*

