
CSI 2101: Discrete Structures Lecture 11
University of Ottawa, Winter 2024

A common trait of all computers is that they solve complex problems by executing trillions or more
simple operations every second. To understand what computers can and cannot do it is useful to have an
idealized model of a device that can perform arbitrary calculations by iterating many small simple steps.
Circuits are one such model.

1 Circuits

To be concrete suppose you are given five numbers x1, x2, x3, x4, x5 and you want to calculate the sum of
the products of all distinct pairs of inputs, namely the value of the expression

y(x1, x2, x3, x4, x5) = x1x2 + x1x3 + x1x4 + x1x5 + x2x3 + x2x4 + x2x5 + x3x4 + x3x5 + x4x5. (1)

In any given step you are allowed to do one of two operations: add two numbers or multiply two numbers.
How should you go about calculating y?

The formula (1) gives you one way of calculating y: Calculate the pairwise products one by one and
keep adding the resulting terms one by one. We can represent this procedure by the following DAG:

x1 x2 x3 x4 x5

× × × × × × × × × ×

+ + + + + + + + + y

Figure 1: A circuit for y(x1, x2, x3, x4, x5).

Each vertex that is not a source represents an elementary operation. If we execute these operations in
order that respects the direction of the edges the output y will be “stored” in the rightmost top vertex.
This is an example of a circuit.

Given a finite set of basic operations, a circuit is a DAG in which every source vertex is labeled by
an input variable xi or a constant and every non-source vertex—called a gate—is labeled with a basic
operation op. The in-degree of every such vertex must equal the number of arguments of op.

To evaluate the circuit on a given input, we topologically sort the vertices and evaluate the gates in
order. For example, the computation x1 = 1, x2 = 0, x3 = 1, x4 = −1, x5 = 2 yields the following sequence
of evaluations from left to right starting at the bottom and moving towards the top:

1 0 1 −1 2

× × × × × × × × × ×

+ + + + + + + + + 1
1 0 2 2 2 2 1 3

0 1 −1 2 0 0 0 −1 2 −2

1

One natural measure of complexity is the number of gates. In this example the complexity is 19. Can we
do better? Here is a another circuit that computes the same function y but has complexity 16: The two

x1 x2 x3 x4 x5

× × × × × +

+

+

+

+

+

+

+

×

×

−1

+ y

Figure 2: Another circuit for y(x1, x2, x3, x4, x5).

circuits compute the same function because y can also be expressed as

y(x1, x2, x3, x4, x5) = (x1 + x2 + x3 + x4 + x5)
2 − (x21 + x22 + x23 + x24 + x25).

The effect of a good circuit choice on complexity can be quite significant when there are many inputs.
For instance we can generalize both the Figure 1 and Figure 2 circuits to ones that compute the sum∑

1≤i<j≤n xixj of all distinct product pairs of n inputs. The circuit complexities would scale as Θ(n2) and
Θ(n), respectively. The Figure 2 type of circuit is clearly preferable.

Here is an even more dramatic example. Suppose you want to calculate the expression

z =
∑

S⊆{1,...,20}
|S|=10

∏
i∈S

xi = x1 · · ·x9x10 + x1 · · ·x9x11 + · · ·+ x1 · · ·x9x20 + · · ·+ x11 · · ·x19x20.

which is the sum of all products of 10 distinct variables among the inputs x1, x2, . . . , x20. This is a sum of
184756 terms, suggesting that a circuit for it should have about that size. Yet it turns out that it admits
a circuit of size less than 1000. The reason is that S can also be represented in this form:

z = c0 · x1 · · ·x20 + c1 · (x1 + 1) · · · (x20 + 1) + · · ·+ c20 · (x1 + 20) · · · (x20 + 20) (2)

where the numbers c0, c1, . . . , c20 are

c0 =
2965638101

5518098432000 c1 =
−46937467057
4828336128000 c2 =

1623151366349
19313344512000 c3 =

−742866335297
1609445376000

c4 =
23244571515317
12875563008000 c5 =

−716646421081
134120448000 c6 =

19976964872357
1609445376000 c7 =

−443829136609
19160064000

c8 =
226997057727689
6437781504000 c9 =

−106692491681983
2414168064000 c10 =

40247351792213
877879296000 c11 =

−95170162303973
2414168064000

c12 =
180520357853249
6437781504000 c13 =

−6601198952479
402361344000 c14 =

199696061419
25546752000 c15 =

−1201368202553
402361344000

c16 =
425713023751
476872704000 c17 =

−324027306227
1609445376000 c18 =

622171058989
19313344512000 c19 =

−15743145547
4828336128000

c20 =
6063698587

38626689024000

Parallel computation Modern computers have multiple cores which allow for fast parallel computation.
A circuit can be naturally evaluated in parallel by coming up with a parallel schedule for the underlying
DAG. The duration of the computation is then determined by the length of the longest path, assuming
that enough parallel processing is available to evaluate all gates in a given layer in unit time. The depth
of a circuit is the length of its longest path.

The circuit in Figure 1 has depth 10 as exhibited by the path that runs from x1 through the leftmost
× gate and the nine + gates from left to right. Is it possible to represent y by a shallower circuit? One
way to do this is to rewire the + gates in a manner that takes advantage of the commutativity of addition:

2

x1 x2 x3 x4 x5

× × × × × × × × × ×

+ + + +

+ +

+ +

+ y

The depth of this circuit for y goes down to 5.

2 Perceptrons

When computers took off in the 1950s and 60s scientists began speculating that they can be used to shed
light on the workings of human intelligence. Their premise was that the mind can be described as a
circuit whose inputs are our sensory perceptions (vision, sound, smell, touch). What are the gates of these
“circuits of the mind”? Neuroscience tells us that the basic blocks of the nervous system, including the
brain, are neural cells, or neurons. These cells take in electrical signals from the sensory system or from
other neurons and amplify or inhibit them depending on their function.

A perceptron is a model of a single neuron. It consists of two types of inputs: n signals x1 up to xn
and an n+ 1 weights w0, w1, . . . , wn. It outputs the value

y = σ(w0 + w1x1 + w2x2 + · · ·+ wnxn),

where σ is a fixed real-valued function called the activation function. One popular choice of activation
function is the logistic function σ(t) = 1/(1 + e−t) which increases from 0 to 1:

t

σ(t) = 1/(1 + e−t)

1

The perceptron can be implemented naturally by this circuit:

w1

x1

× +

w2

x2

× +

w3

x3

× +

wn

xn

× +w0 · · · σ

For example, a perceptron can be used to decide whether the room is quiet or noisy based on the readings
of five “noise sensors” x1, x2, x3, x4, x5. Suppose a given sensor outputs 1 if it detects noise and 0 if it
doesn’t. The perceptron σ(−5+2x1+2x2+2x3+2x4+2x5) would then output the following overall noise
estimate depending on the number k of sensors that output 1:

3

k 0 1 2 3 4 5

σ 0.01 0.05 0.27 0.73 0.95 0.99

Perceptrons are not only useful for modelling natural intelligence but also for endowing machines with the
ability to make decisions from data. Suppose that you want to estimate your chances y of getting an A in
Discrete Structures. This might depend on a variety of factors such as your midterm grade x1, your quiz
average x2, and the number of hours x3 that you studied each week. Your chances y can then reasonably
be modeled as the output of some perceptron σ(w0 + w1x1 + w2x2 + w3x3). But how should you choose
the weights w0 to w3?

The central dogma of Machine Learning is that you can estimate unknown parameters like w0, w1, w2, w3

from data using a training algorithm. From talking to your friends who took the course last year you
gathered the following data:

name x1 x2 x3 A?

Alice 39 31 12 yes
Bob 45 11 3 no
Charlie 43 25 6 yes

...
...

...
...

Zack 50 40 0 yes

For any given student s in the table, you would expect that the “indicator value” ŷ(s) for the event that
the student received an A should be close to the perceptron’s estimate of this value:

ŷ(s) ≈ σ(w0 + w1x1(s) + w2x2(s) + w3x3(s)).

This approximation will never be exact; the left-hand side is a binary value (0 or 1) while the right hand
side is some real number between 0 and 1. A natural error measure is the square loss

ℓ(s) =
(
ŷ(s)− σ(w0 + w1x1(s) + w2x2(s) + w3x3(s))

)2
.

It is sensible to try to pick the weights w0, w1, w2, w3 so as to miminize the sum z of the individual losses:

z = ℓ(Alice) + ℓ(Bob) + · · ·+ ℓ(Zack)

=
(
1− σ(w0 + 39w1 + 31w2 + 12w3)

)2
+
(
0− σ(w0 + 45w1 + 11w2 + 3w3)

)2
...

+
(
1− σ(w0 + 50w1 + 40w2 + 0w3)

)2
.

Minimizing such expressions can be quite difficult. There is however a natural strategy to try: Start
with an initial guess for the unknowns w0, w1, w2, w3, then keep moving the “point” (w0, w1, w2, w3) in the
direction in which the value of z decreases most rapidly. We know from calculus that this direction is the
opposite of the gradient

∇z =

(
∂z

∂w0
,
∂z

∂w1
,
∂z

∂w2
,
∂z

∂w3

)
.

To summarize, one general recipe for “learning” the weights w0, w1, w2, w3 is to start with an initial guess,
then move a bit in the direction of −∇z(w0, w1, w2, w3), and so on, until a “local minimum” in which
∇z ≈ 0 is reached. This type of minimization method is called gradient descent.

To turn gradient descent into an actual algorithm you must specify several things, including your choice
of initial guess, the amount by which you move in the direction of −∇z, and so on. You can learn more
about it in courses on optimization and machine learning. An indispensable part of any implementation
is, however, the calculation of the gradient ∇z at various points (w0, w1, w2, w3).

4

The function z that describes the sum of losses for the perceptron is simple enough that we can do this
calculation by hand. We can do it by adding up the gradients of the individual losses:

∇z = ∇ℓ(Alice) +∇ℓ(Bob) + · · ·+∇ℓ(Zack).

For any fixed student, the partial derivative ∂ℓ/∂wi is

∂

∂wi

(
ŷ−σ(w0+w1x1+w2x2+w3x3)

)2
= −2xi

(
ŷ−σ(w0+w1x1+w2x2+w3x3)

)
σ′(w0+w1x1+w2x2+w3x3).

(When i = 0 we omit x0.) Thus we can evaluate ∇z at any point (w0, w1, w2, w3) by summing up these
expressions over the data table, for example

∂z

∂w1
= −68(1− σ(w0 + 39w1 + 31w2 + 12w3))σ

′(w0 + 39w1 + 31w2 + 12w3)

− 90(0− σ(w0 + 45w1 + 11w2 + 3w3))σ
′(w0 + 45w1 + 11w2 + 3w3)

...

− 100(1− σ(w0 + 50w1 + 40w2))σ
′(w0 + 50w1 + 40w2 + 0w3).

Here σ′ is the derivative of the logistic function, namely σ′(t) = e−t/(1− e−t)2.

3 Backpropagation

While perceptrons are convenient to work with they are inadequate for more complex data-driven decision
tasks. Suppose you want to know whether an image has a cat in it. The inputs x1, x2, . . . , xn are the
pixels and the output y is supposed to equal 1 if x1, . . . , xn form a cat and 0 if they don’t. A perceptron
would try to base its decision on the value σ(w0 +w1x1 + · · ·+wnxn) for some weights that represent the
importance of different pixels. A weighted sum of pixels cannot take into account high-level features of
vision such as edges between objects, foreground and background layers, and so on.

A more expressive model can be obtained by taking multiple perceptrons and organizing them in layers.
By analogy with biological neurons we may expect that neurons closer to the inputs should be adequate for
lower-level perception tasks such as edge-detection, while neurons closer to the output level may perform
more cognitively demanding roles such as object detection and classification (e.g. is it an animal?)

There is a steep price to pay for this complexity: The model now consists of not one but many
perceptrons so the number of unknown weights that needs to be estimated from the training data becomes
very large. Moreover, the circuits representing these models become more complex. For the training to
complete in a reasonable amount of time it is essential to have a systematic and efficient way to evaluate
the partial derivatives of the loss. As the loss is usually some simple function of the model, which is itself
a circuit whose inputs are the unknown “weights”, this task can be captured by the following problem:

Given a circuit C with inputs x1, . . . , xn and a designated output gate y, design a circuit ∇C
that computes all partial derivatives ∂y/∂x1, . . . , ∂y/∂xn.

There are two algorithms for this problem. Both solve the problem inductively in order determined by
a topological sort of the gates of C. The more natural forward propagation algorithm visits the vertices
in order from sources to sink. In general, if C has n inputs and g gates, forward propagation produces a
circuit ∇C of size O(ng). Modern neural networks can easily have n and g in the millions resulting in a
prohibitively large circuit. In contrast, the backpropagation algorithm produces a circuit of size O(n + g)
only.

The backpropagation algorithm calculates partial derivatives by visiting the vertices in reverse topo-
logical order, starting from the output y and ending with the sources x1, . . . , xn. Upon visiting node z,
backpropagation constructs a new gate that calculates the partial derivative ∂y/∂z. To explain what this
means we need to define the partial derivative of one circuit gate y with respect to another gate z.

5

Definition 1. Assume C is a circuit, y is a gate, and z is a vertex (input or gate). Let (C − z) be the
circuit obtained by removing all edges that point to z from C and turning z into an input (if it is not
already one). Then y computes some function f(z, other inputs) in (C − z). The partial derivative ∂y/∂z
is the derivative of f with respect to z.

Let’s work out an example. Consider the following circuit that computes the function y(x1, x2) =
(x1 + x2 + x1x2)(x1 + x2). The ordering x1, x2, u1, u2, u3, y is a topological sort of its vertices. To its right
are the circuits (C − u3) and (C − u1).

x1

x2

+

u1

×
u2

+

u3

× y

circuit C

x1

x2

+

u1

×
u2

u3

× y

circuit (C − u3)

x1

x2

u1

×
u2

+

u3

× y

circuit (C − u1)

The circuit (C−u3) has inputs x1, x2, u3. The function computed by y in (C−u3) is u1 ·u3 = (x1+x2) ·u3.
The partial derivative ∂y/∂u3 is then ∂(u1 · u3)/∂u3 = u1 = x1 + x2. The last simplification was possible
because u1 does not depend on u3 (as it precedes it in the topological sort).

The circuit (C − u1) has inputs x1, x2, u1. The function computed by y in (C − u1) is u1 · u∗3 =
u1 · (u1 + u2) = u1 · (u1 + x1 + x2). Here u∗3 stands for the function computed by u3 in (C − u1): This is
not the same as the function computed by u3 in C! The input u1 appears twice in this expression, once
explicitly as an argument of the product gate y and once implicitly via u∗3 which itself depends on u1. We
can calculate the partial derivative of this function using the product rule for derivatives:

∂y

∂u1
=

∂(u1 · u∗3)
∂u1

=
∂u1
∂u1

· u∗3 + u1 ·
∂u∗3
∂u1

= 1 · (u1 + u2) + u1 ·
∂(u1 + u2)

∂u1
= (u1 + u2) + u1 = 2u1 + u2.

This expresses the desired partial derivative as a small circuit in terms of the gates u1 and u2, which are
already present in C. We can compute ∂y/∂u3 from the existing gates for u1 and u2 and a bit of extra
work (one addition and one multiplication). Is there a general method for this?

Let us first rework the expression for ∂y/∂u1 in a more systematic way. To do this it will be useful to
introduce another piece of notation. For a gate g taking inputs a, b, let ∂a[g] denote the partial derivative of
the gate operation [g] with respect to argument a. For example, for a product gate [g](a, b) = a · b we have
∂a[g] = b. In general, ∂a[g] is not the same as ∂g/∂a. In the circuit (C − u1), ∂u1 [y] = ∂(u1u

∗
3)/∂u1 = u∗3,

while ∂y/∂u1 = u∗3 + u1. The reason is that u1 affects y partially through the edge (u1, y) and partially
through the path (u1, u3, y). In this example we can represent y as y = [y]([u3](u1, u2), u1). By the chain
rule,

∂y

∂u1
=

∂y

∂u3
· ∂u1 [u3] + ∂u1 [y].

As we already calculated, ∂y/∂u3 = u1. As for the other terms, u3 is a sum gate so ∂u1 [u3] = 1 and u1 is
a product gate so ∂u1 [y] = u3 = u1 + u2. We obtain again ∂y

∂u1
= 2u1 + u2.

In general, suppose we have a gate z whose out-edges point to gates z1, . . . , zt. In the circuit (C − z),
the output y depends on z via the gates z1, . . . , zt, each of which depends on z (one of which could be y
itself). Using the chain rule for derivatives,

∂y

∂z
=

∂y

∂z1
· ∂z[z1] + · · ·+ ∂y

∂zt
· ∂z[zt]. (3)

This expresses ∂y/∂z as a small circuit that depends on partial derivatives of y with respect to gates
that succeed y in the topological sort and some derivatives of the gates, suggesting the following iterative
algorithm for partial derivatives.

6

The Backpropagation Algorithm. Given a circuit C as an input,
Compute a reverse topological sort s of C’s vertices starting with y.
For every z in s, construct a subcircuit for ∂y/∂z using formula (3).
Output the resulting circuit ∇C.

We demonstrate an execution of backpropagation on our example circuit C. It is useful to visualize
the circuit ∇C by placing the gate ∂y/∂z in a position mirroring the gate z.

Our reverse topological sort s is the ordering y, u3, u2, u1, x2, x1. The first vertex y is isolated in the
circuit (C − y), so ∂y/∂y = 1.

x1

x2

+

u1

×
u2

+

u3

× y

∂y/∂y
1

Next in s is u3. As u3 has a single out-edge going into y, (3) gives ∂y/∂u3 = ∂y/∂y · ∂u3 [y] = ∂y/∂y · u1:

x1

x2

+

u1

×
u2

+

u3

× y

∂y/∂y
1

×
∂y/∂u3

Next is u2, which has a single edge pointing to u3. From (3) we get ∂y/∂u2 = ∂y/∂u3 ·∂u2 [u3] = ∂y/∂u3 ·1.

x1

x2

+

u1

×
u2

+

u3

× y

∂y/∂y
1

×
∂y/∂u3

×
∂y/∂u2

Next is u1, which has outgoing edges to u3 and y. Using (3) we get ∂y/∂u1 = ∂y/∂u3 · ∂u1 [u3] + ∂y/∂y ·
∂u1 [y] = ∂y/∂u3 ·1+∂y/∂y ·u3. To keep the picture simple we’ll use ∂y/∂y = 1 and omit the multiplicaton
gates.

x1

x2

+

u1

×
u2

+

u3

× y

∂y/∂y
1

×
∂y/∂u3

×
∂y/∂u2

+

∂y/∂u1

The second to last vertex is x2, with edges pointing to u1 and u2. We have ∂y/∂x2 = ∂y/∂u1 · ∂x2 [u1] +
∂y/∂u2 · ∂x2 [u2] = ∂y/∂u1 + ∂y/∂u2 · x1.

7

x1

x2

+

u1

×
u2

+

u3

× y

∂y/∂y
1

×
∂y/∂u3

×
∂y/∂u2

+

∂y/∂u1

× + ∂y/∂x2

Finally we construct the gate ∂y/∂x1 using (3) one last time.

x1

x2

+

u1

×
u2

+

u3

× y

∂y/∂y
1

×
∂y/∂u3

×
∂y/∂u2

+

∂y/∂u1

× + ∂y/∂x2

×

+ ∂y/∂x1

At this point it is a good idea to check that this circuit produces correct outputs:

∂y

∂x1
=

∂y

∂u2
· x2 +

∂y

∂u1

=
∂y

∂u3
· x2 +

(
u3 +

∂y

∂u3

)
= u1x2 + (u3 + u1)

= (x1 + x2)x2 + (2u1 + u2)

= (x1 + x2)x2 + (2x1 + 2x2 + x1x2)

= 2x1 + 2x2 + 2x1x2 + x22.

You can verify that this is indeed the partial derivative of (x1 + x2 + x1x2)(x1 + x2) with respect to x1.
We can now state the correctness of the backpropagation algorithm. Given a set of basic operations B,

let ∇B be the set of all partial derivatives of all operations in B.

Theorem 2. For any circuit C with designated output y and operations coming from B, the output ∇C
of Backpropagation is a circuit with operation set B ∪ ∇B ∪ {+,×} that contains gates computing ∂y/∂u
for every vertex u of C. The number of gates in ∇C is at most three times the number of edges plus the
number of vertices in C.

The proof is by strong induction with respect to the ordering s. The gate count comes from formula (3):
Each edge (z, zi) in G contributes one gate ∂z[zi] in ∇G, one multipilication ∂y/∂zi · ∂z[zi], and at most
one addition in the chain rule.

References

Formula (2) is a special case of an unpublished construction of Ben-Or. The history of backpropagation
looks complicated. It seems to have been discovered, forgotten, and rediscovered several times.

8

https://cstheory.stackexchange.com/questions/33503/monotone-arithmetic-circuit-complexity-of-elementary-symmetric-polynomials/33506#33506

	Circuits
	Perceptrons
	Backpropagation

