1. Calculate the following numbers.
(a) $1-4+7-11 \bmod 6$
(b) $11 \cdot 13-4 \cdot 5 \bmod 17$
(c) $4 \cdot 9^{-1} \bmod 23$
2. Calculate the following numbers using the suggested method:
(a) $2^{9} \bmod 11$ using iterated multiplication.
(b) $2^{81} \bmod 11$ using fast exponentiation (the Power algorithm from Lecture 5).
(c) $2^{2^{81}} \bmod 11$ using Fermat's Little Theorem (Theorem 5 from Lecture 5).
3. Calculate the following numbers.
(a) x and y that solve $5 x+7 y \equiv 17(\bmod 19)$ and $4 x+11 y \equiv 13(\bmod 19)$.
(b) $1^{1}+2^{2}+\cdots+99^{99} \bmod 3$.
(c) (Optional) 42! mod 43 (Hint: Pair up each number with its inverse. You can try $6!\bmod 7$ first.)
4. You will investigate the "baby RSA" encryption from Lecture 5. Recall that the public encryption key e and "secret" decryption key d are chosen so that $e d \equiv 1(\bmod n-1)$ for prime modulus n.
(a) Assume $n=29$ and $d=11$. Show how to choose e to enable decryption.
(b) Calculate the encryption $c=m^{e} \bmod n$ of the message $m=10$ and the encryption key e from part (a). Then calculate the decryption $c^{d} \bmod n$.
(c) Now suppose Eve observes the ciphertext $c=33$ that Alice sent to Bob using modulus $n=37$ and encryption key $e=7$. How can Eve recover the message m without knowing d ?
