1. Find exact closed form expressions for the following sums. Explain how you discovered the expression and prove that it is correct.
(a) $1^{2}+3^{2}+5^{2}+\cdots+(2 n+1)^{2}$.
(b) $\left(2^{0}+\cdots+2^{n}\right)+\left(2^{1}+\cdots+2^{n+1}\right)+\cdots+\left(2^{n}+\cdots+2^{2 n}\right)$.
2. Show the following inequalities by using the integral method for approximating sums.
(a) $2 \sqrt{n+1}-2 \leq 1 / \sqrt{1}+1 / \sqrt{2}+\cdots+1 / \sqrt{n} \leq 2 \sqrt{n+1}-1$.
(b) $n^{3} / 3 \leq 1^{2}+2^{2}+\cdots+n^{2} \leq n^{3} / 3+n^{2}$.
(c) $1 \cdot e^{-1^{2}}+2 \cdot e^{-2^{2}}+\cdots+n \cdot e^{-n^{2}} \leq 3 /(2 e)$.
3. Sort the following functions in increasing order of asymptotic growth:

$$
n^{\log n}, 2^{n}, n^{n}, 2^{\sqrt{\log n}}, 2^{n^{2}}, e^{2^{n}}, n, 2^{e^{n}}, n^{e}, \sqrt{n},(\log n)^{\log n}
$$

(For example, if you are given the functions n^{2}, n, and 2^{n}, the sorted list would be $n, n^{2}, 2^{n}$.) Show that for every pair of consecutive functions f, g in your list, f is $o(g)$.
4. Let T be the set of all positive integers that do not contain a 4 anywhere in their base-10 representation. For example, 7 and 335 are in T, but 5642 isn't. This question concerns the value of the sum

$$
S=\sum_{t \in T} \frac{1}{t}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{6}+\cdots+\frac{1}{13}+\frac{1}{15}+\cdots
$$

(a) Show that there are at most $8 \cdot 9^{d-1}$ numbers with d digits in T.
(b) Use part (a) to show that the d-digit numbers contribute at most $8 \cdot 0.9^{d-1}$ to S.
(Hint: What is the smallest d-digit number?)
(c) Prove that $S<100$. Can you prove that $S<10$?

