1. Find exact closed-form solutions to the following recurrences.
(a) $T(n)=3 T(n / 2)+n, T(1)=1$, where n is a power of 2 .
(b) $F(n)=\frac{1}{3} F(n-1)+1, F(0)=0$.
(c) $f(n)=8 f(n-1)-15 f(n-2), f(0)=0, f(1)=1$
(d) $f(n)=f(n-1)+f(n-2)+1, f(0)=0, f(1)=1$
(Hint: Try homogenizing with $f(n)=g(n)+c$ for some constant c.)
2. Recall that a saddle in a table of numbers is an entry that is largest in its column and smallest in its row. In Lecture 2 we showed that every table can have at most one saddle. Here is an algorithm for finding it (if it exists):

Input: A $n \times n$ table T. Assume n is a power of two and all entries of T are distinct.
Algorithm Saddle (T) :
If $n=1$, output the (unique) entry in T.
Otherwise,
Recursively run $\operatorname{Saddle}\left(T_{i}\right)$ on each of the four quadrants $T_{1}, T_{2}, T_{3}, T_{4}$ of T.
Let s_{i} be the output of Saddle $\left(T_{i}\right)$.
Test if s_{i} is a saddle of T by comparing it to
all numbers in its row and column except those in T_{i}.
If one of s_{1}, s_{2}, s_{3}, or s_{4} passes the test, output it.
(a) Show a sample run of Saddle on the following input T :

12	2	5	10
16	7	13	4
15	8	14	9
6	1	11	3

(b) Let $C(n)$ be the worst-case number of comparisons Saddle performs on an $n \times n$ input. Explain why

$$
\begin{equation*}
C(n) \leq 4 C(n / 2)+4 n \tag{1}
\end{equation*}
$$

(c) Apply Theorem 6 from Lecture 7 to calculate the big-Oh asymptotic growth of $C(n)$.
(d) Obtain an exact formula for $C(n)$ assuming the inequality in (1) is an equality. Argue that your solution is an upper bound on the number of comparisons performed by Saddle.
3. DNA (Deoxyribonucleic acid) is a molecule that carries the genetic instructions for all known organisms and many viruses. It consists of a chain of bases. In DNA chain, there are four types of bases: A, C, G, T. For example, a DNA chain of length 10 can be ACGTACGTAT.
(a) Let $g(n)$ be the number of configurations of a DNA chain of length n in which the pairs TT and TG never appear. Write a recurrence for $g(n)$. (Hint: Is the first base a T?)
(b) Solve the recurrence from part (a).
(c) Which one of the alternatives $g(n)=o\left(3^{n}\right), g(n)=\Theta\left(3^{n}\right)$, or $3^{n}=o(g(n))$ is correct?
4. Bottle T has 4 litres of tea and bottle C has 4 litres of coffee. In each step you pour 1 litre of liquid from bottle T into bottle C, stir, pour back 1 litre of liquid from bottle C into bottle T. T, and stir again. (This is a recipe for yuanyang.) Let $f(n)$ be the amount of coffee in bottle T after n steps.
(a) Calculate the values $f(0), f(1)$, and $f(2)$.
(b) Write a recurrence for $f(n)$.
(c) Solve the recurrence from part (b).
(d) What is limiting value of $f(n)$ as n approaches infinity? How many steps do you need to perform to approach this value within 0.01 litres?

