1. Are the following propositions about graphs true or false? Justify your answer. Specify your proof method.
(a) Assume G is connected. Let G^{\prime} be the graph obtained by removing an edge e from G. G^{\prime} is connected if and only if e belongs to a cycle in G.
(b) Assume G is connected. Let G^{\prime} be the graph obtained by removing a vertex v and its incident edges from $G . G^{\prime}$ is connected if and only if v belongs to a cycle in G.
(c) If every vertex in G belongs to a closed walk of odd length then there are at least as many edges as there are vertices in G.
2. Let G be the graph below. In this question you will count how many spanning trees G has.

You will make use of the following auxiliary graph H : The vertices of H are the edges of G. A pair $\{e, f\}$ is an edge of H if removing edges e and f from G disconnects it.
(a) Draw a diagram of H.
(b) Argue that the number of spanning trees of G equals the number of vertex-pairs in H that do not form an edge.
(c) Use parts (a) and (b) to count the number of spanning trees of G.
3. In this question you will work out vertex-disjoint paths for the following source-sink pairs in the Beneš network B_{3}. The sources are labeled 1 to 8 and the sinks are labeled A to H from top to bottom.

$$
\begin{array}{llllllll}
1 \mathrm{E} & 2 \mathrm{~F} & 3 \mathrm{D} & 4 \mathrm{G} & 5 \mathrm{~B} & 6 \mathrm{H} & 7 \mathrm{C} & 8 \mathrm{~A}
\end{array}
$$

(a) For each source-sink pair above, determine whether the path should be routed through the top or through the bottom.
(b) Route the top and bottom paths from part (a) recursively. Draw a diagram of the resulting eight vertex-disjoint paths.
4. Let G be the digraph whose vertices are the 1253 -digit numbers with digits $1,2,3,4,5$, and (u, v) is an edge if $v-u$ equals 1,10 , or 100 .
(a) Show that G is acyclic.
(b) What is the length of the longest path in G ? Justify your answer.
(c) Use part (b) to show that G must have an antichain of size 1110 .
(d) (Optional) Show that G has an antichain of size 19 .
(e) (Optional) Show that the vertices of G can be partitioned into 19 (vertex-disjoint) paths. Conclude that G cannot have an antichain of size 20 .

