Practice Midterm 1

- 1. Prove that for every integer n there exists an integer k such that $|n^2 5k| \leq 1$. (Hint: What is $n^2 \mod 5$?)
- 2. What is $1 + (1 + 2) + (1 + 2 + 3) + \dots + (1 + 2 + 3 + \dots + 1000)$?
- 3. Find a closed-form expression for the recurrence $f(n+1) = 2f(n) + 2^{n-1}$, f(1) = 0.
- 4. You have overhang blocks 10, 11, up to n units long, one of each kind. They are stacked over the table from smallest to largest so that their left edges align. (See diagram for n = 13). Show that the configuration is not stable when n is sufficiently large.

Practice Midterm 2

- 1. Show that for every integer n, if $n^3 + n$ is divisible by 3 then $2n^3 + 1$ is not divisible by 3.
- 2. Let $f(n) = 1 + 1/3 + 1/5 + \dots + 1/(2n-1)$. Show that f is $\Theta(\log n)$.
- 3. An $n \times n$ plot of land (*n* is a power of two) is split in two equal parts by a North-South fence. The Western half is sold and the Eastern half is split in two equal parts by an West-East fence. The same procedure is applied to the remaining $(n/2) \times (n/2)$ plots until 1×1 plots are obtained (see n = 4 example). How many units of fence are used?
- 4. Sort these three functions in increasing order of growth: $\sqrt{n} \cdot \log n$, $n/\sqrt{\log n}$, $\sqrt{n \cdot \log n}$. For your sorted list f, g, h show that f is o(g) and g is o(h).

Practice Midterm 3

- 1. Bob has received from Alice the RSA ciphertext c = 2. The modulus is n = pq with p = 3 and q = 5. The encryption key is e = 3.
 - (a) Calculate Bob's decryption key d.
 - (b) Decrypt Alice's message m.
- 2. What is the largest integer n for which

$$n \le 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{9999}}?$$

- 3. Find a closed-form expression for the recurrence f(n) = 3f(n-1) + 4, f(0) = 0.
- 4. Let f(n) be the number of all length-*n* strings with symbols $\{A, B, C\}$ in which every B is immediately followed by a C (e.g., BCAC is counted but ACAB is not). Find the value of *a* for which f(n) is $\Theta(a^n)$.

13	
12	
11	
10	

LD	SOLD	
SO	SOLD	