Practice Midterm 1

1. Prove that for every integer n there exists an integer k such that $\left|n^{2}-5 k\right| \leq 1$. (Hint: What is $n^{2} \bmod 5$?)

Solution: First we check that for all $n, n^{2} \bmod 5$ equals 0,1 or 4 :

$$
\begin{array}{l|lllll}
n \bmod 5 & 0 & 1 & 2 & 3 & 4 \\
\hline n^{2} \bmod 5 & 0 & 1 & 4 & 4 & 1
\end{array}
$$

Since $4 \equiv-1(\bmod 5)$ it follows that for every n, n^{2} is congruent to 0,1 , or -1 modulo 5 . Therefore n^{2} is of the form $5 k$ or $5 k-1$ or $5 k+1$ for some integer k. In all cases $\left|n^{2}-5 k\right| \leq 1$.
2. What is $1+(1+2)+(1+2+3)+\cdots+(1+2+3+\cdots+1000)$?

Solution: The sum of the first k integers is $k(k+1) / 2=\frac{1}{2} k^{2}+\frac{1}{2} k$, so

$$
\begin{aligned}
1+(1+2)+\cdots+(1+2+3+\cdots+n) & =\frac{1}{2}\left(1^{2}+2^{2}+\cdots+n^{2}\right)+\frac{1}{2}(1+2+\cdots+n) \\
& =\frac{1}{2}\left(\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n\right)+\frac{1}{2}\left(\frac{1}{2} n^{2}+\frac{1}{2} n\right) \\
& =\frac{1}{6} n^{3}+\frac{1}{2} n^{2}+\frac{1}{3} n
\end{aligned}
$$

using the formulas for the sum of the first n squares of integers and the sum of the first n integers, respectively. (Notice that this expression gives the correct answer for $n=0$, 1, and 2.) Plugging in $n=1000$ we obtain the answer $\frac{1}{6} \cdot 10^{9}+\frac{1}{2} \cdot 10^{6}+\frac{1}{3} \cdot 10^{3}=167,167,100$.

Alternative solution: as $1+2+\cdots+n=n(n+1) / 2$ we may guess that $1+(1+2)+\cdots+(1+2+3+\cdots+n)$ has the form $a n^{3}+b n^{2}+c n+d$. Plugging in $n=0,1,2,3$ we get that a, b, c, d must satisfy

$$
\begin{aligned}
d & =0 \\
a+b+c+d & =1 \\
8 a+4 b+2 c+d & =1+(1+2)=4 \\
27 a+9 b+3 c+d & =4+(1+2+3)=10
\end{aligned}
$$

Eliminating first d and then c we get $6 a+2 b=2$ and $24 a+6 b=7$. This solves to $2 b=1$. Therefore $b=1 / 2$. Plugging back in we get $a=1 / 6$ and $c=1 / 3$.
We now verify that the sum equals $\frac{1}{6} n^{3}+\frac{1}{2} n^{2}+\frac{1}{3} n$ by induction on n. The base case $n=1$ was already checked. As for the inductive step we assume the claim is true for n and verify it for $n+1$:

$$
\begin{aligned}
1+(1+2)+\cdots+(1+\cdots+(n+1)) & =\frac{1}{6} n^{3}+\frac{1}{2} n^{2}+\frac{1}{3} n+(1+\cdots+(n+1)) \\
& =\frac{1}{6} n^{3}+\frac{1}{2} n^{2}+\frac{1}{3} n+\frac{(n+1)(n+2)}{2} \\
& =\frac{1}{6}\left(n^{3}+3 n^{2}+3 n+1\right)+\frac{1}{2}\left(n^{2}+2 n+1\right)+\frac{1}{3}(n+1) \\
& =\frac{1}{6}(n+1)^{3}+\frac{1}{2}(n+1)^{2}+\frac{1}{3}(n+1) .
\end{aligned}
$$

Plugging in $n=1000$ we obtain the same answer as above.
3. Find a closed-form expression for the recurrence $f(n+1)=2 f(n)+2^{n-1}, f(1)=0$.

Solution: We guess a solution for $f(n)$ by iterating the formula:

$$
\begin{aligned}
f(n) & =2 f(n-1)+2^{n-2} \\
& =2\left(2 f(n-2)+2^{n-3}\right)+2^{n-2}=2^{2} \cdot f(n-2)+2 \cdot 2^{n-2} \\
& =2^{2} \cdot\left(2 f(n-3)+2^{n-4}\right)+2 \cdot 2^{n-2}=2^{3} \cdot f(n-3)+3 \cdot 2^{n-2} .
\end{aligned}
$$

This suggests the guess $f(n)=2^{n-1} \cdot f(1)+(n-1) \cdot 2^{n-2}=(n-1) \cdot 2^{n-2}$.
We now prove that $f(n)=(n-1) \cdot 2^{n-2}$ by induction on n. When $n=1, f(1)=0$ and $(n-1) \cdot 2^{n-2}=0$. Now assume $f(n)=(n-1) \cdot 2^{n-2}$ for some $n \geq 1$. Then

$$
f(n+1)=2 f(n)+2^{n-1}=2 \cdot(n-1) \cdot 2^{n-2}+2^{n-1}=n \cdot 2^{n-1}
$$

so the formula must be correct for all n.
4. You have overhang blocks 10,11 , up to n units long, one of each kind. They are stacked over the table from smallest to largest so that their left edges align. (See diagram for $n=13$). Show that the configuration is not stable when n is sufficiently large.

Solution: We assume all blocks have the same weight. If instead a block's weight is proportional its length the calculation is a bit more complicated but the conclusion is similar.
The center of mass of all the blocks, measured from the left edge of the blocks, is at position

$$
P(n)=\frac{1}{2 n} \cdot(10+11+\cdots+n)=\frac{1}{2 n}((1+\cdots+n)-(1+\cdots+9))=\frac{1}{2 n}\left(\frac{n(n+1)}{2}-\frac{9 \cdot 10}{2}\right)=\Omega(n)
$$

so when n is sufficiently large, $P(n)>10$, the center of mass falls to the right of the edge of the table, and the configuration is not stable.

Practice Midterm 2

1. Show that for every integer n, if $n^{3}+n$ is divisible by 3 then $2 n^{3}+1$ is not divisible by 3 .

Solution: We can prove this proposition by cases depending on the residue of $n^{3}+n$ modulo 3 . If $n \equiv 0 \bmod 3$ then $n^{3}+n$ is divisible by 3 , while $2 n^{3}+1 \equiv 1 \bmod 3$, so $2 n^{3}+1$ is not divisible by 3 , so the proposition holds. If $n \equiv 1 \bmod 3$ then $n^{3}+n \equiv 2 \bmod 3$, so $n^{3}+n$ is not divisible by 3 and the proposition holds again. If $n \equiv 2 \bmod 3$, then $n^{3}+n \equiv 1 \bmod 3$ and $n^{3}+n$ is not divisible by 3 again.
2. Let $f(n)=1+1 / 3+1 / 5+\cdots+1 /(2 n-1)$. Show that f is $\Theta(\log n)$.

Solution: $f(n)$ dominates the value of the integral $\int_{1}^{2 n}(1 / x) d x$.

It is dominated by the value of the same integral after subtracting the light gray area which is at most 2 . Therefore

$$
\int_{1}^{2 n+1} \frac{1}{x} d x \leq f(n) \leq \int_{1}^{2 n+1} \frac{1}{x} d x+2 .
$$

The integral evaluates to $\ln (2 n+1)$, so $\ln (2 n+1) \leq f(n) \leq \ln (2 n+1)+2$ so $f(n)$ is $\Theta(\ln (2 n+1))=\Theta(\log n)$.
Alternative solution: On the one hand, $f(n) \leq 1+1 / 2+1 / 3+\cdots+1 /(2 n)=H(2 n)$, where $H(n)$ is the n-th harmonic number from Lecture 7. On the other hand, $f(n) \geq 1 / 2+1 / 4+1 / 6+\cdots+1 /(2 n)=\frac{1}{2} H(n)$. Therefore $\frac{1}{2} H(n) \leq f(n) \leq H(2 n)$. In Lecture 7 we showed that $H(n)$ is $\Theta(\log n)$, so $H(2 n)$ is also $\Theta(\log 2 n)=\Theta(\log n)$. Therefore $f(n)$ must be $\Theta(\log n)$ as well.
3. An $n \times n$ plot of land (n is a power of two) is split in two equal parts by a North-South fence. The Western half is sold and the Eastern half is split in two equal parts by an West-East fence. The same procedure is applied to the remaining $(n / 2) \times(n / 2)$ plots until 1×1 plots are obtained
 (see $n=4$ example). How many units of fence are used?

Solution: The amount $T(n)$ of fence used satisfies the recurrence $T(n)=2 T(n / 2)+3 n / 2$ for $n>1$, with $T(1)=0$. We can unwind the recurrence as follows:

$$
\begin{aligned}
T(n) & =2 T(n / 2)+3 / 2 \cdot n \\
& =2\left(2 T\left(n / 2^{2}\right)+3 / 2 \cdot n / 2\right)+3 / 2 \cdot n=2^{2} T\left(n / 2^{2}\right)+3 / 2 \cdot 2 n \\
& =2^{2}\left(2 T\left(n / 2^{3}\right)+3 / 2 \cdot n / 2^{2}\right)+3 / 2 \cdot 2 n=2^{3} T\left(n / 2^{3}\right)+3 / 2 \cdot 3 n
\end{aligned}
$$

After $\log n$ steps we expect to obtain $T(n)=n \cdot T(1)+\frac{3}{2} n \log n=\frac{3}{2} n \log n$. We confirm the correctness of this guess by induction. For the base case $n=1, T(1)=0$ as desired. For the inductive step we assume $T(k)=\frac{3}{2} k \log k$ for all $k<n$ that are powers of two. Then

$$
T(n)=2 T(n / 2)+3 n / 2=2 \cdot \frac{3}{2} \cdot \frac{n}{2} \log (n / 2)+\frac{3 n}{2}=\frac{3 n}{2} \cdot(\log n-1)+\frac{3 n}{2}=\frac{3}{2} \cdot n \log n
$$

when n is a power of two, concluding the inductive step.
4. Sort these three functions in increasing order of growth: $\sqrt{n} \cdot \log n, n / \sqrt{\log n}, \sqrt{n \cdot \log n}$. For your sorted list f, g, h show that f is $o(g)$ and g is $o(h)$.

Solution: $\sqrt{n \log n}$ is $o(\sqrt{n} \log n)$ because the ratio $\sqrt{n \log n} / \sqrt{n} \log n$ equals $1 / \sqrt{\log n}$, which eventually becomes and stays smaller than any given constant. $\sqrt{n} \log n$ is $o(n / \sqrt{\log n})$ because the ratio $\sqrt{n} \log n /(n / \sqrt{\log n})$ equals $(\log n)^{3 / 2} / n^{1 / 2}$. In Lecture 7 we showed that $(\log n)^{a}$ is $o\left(n^{b}\right)$ for any constants $a, b>0$, so this ratio becomes and stays smaller than any constant when n is sufficiently large.

Practice Midterm 3

1. Bob has received from Alice the RSA ciphertext $c=2$. The modulus is $n=p q$ with $p=3$ and $q=5$. The encryption key is $e=3$.
(a) Calculate Bob's decryption key d.

Solution: e and d must satisfy the equation $e d \equiv 1(\bmod (p-1)(q-1))$, so $3 d \equiv 1(\bmod 8)$. Therefore d is the multilpicative inverse of 3 modulo 8 . We find it using extended Euclid's algorithm: $8=2 \cdot 3+2$ and $3=2+1$, so $1=3-2=3-(8-2 \cdot 3)=-8+3 \cdot 3$. Therefore $d=3$.
(b) Decrypt Alice's message m.

Solution: The decrypted message is $c^{d}=2^{3}=8(\bmod 15)$. (You can verify that $m^{e}=8^{3} \equiv 2=c$ $(\bmod 15)$.
2. What is the largest integer n for which

$$
n \leq 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{9999}} ?
$$

Solution: Let S denote the sum on the right. The area under the first 9999 rectangles is at least as large as the area under the curve, so

$$
S \geq \int_{1}^{10000} \frac{d x}{\sqrt{x}}=\left.2 \sqrt{x}\right|_{1} ^{10000}=200-2=198
$$

If the area L under the light rectangles is removed from S then the dark rectangles fit under the curve, so $S-L \leq 198$. The light rectangles stack up to a rectangle of width 1 and height less than 1 , so $L<1$. Therefore $198 \leq S<199$ and $n=198$.
3. Find a closed-form expression for the recurrence $f(n)=3 f(n-1)+4, f(0)=0$.

Solution: We unwind the recurrence:

$$
\begin{aligned}
f(n) & =3 f(n-1)+4=3(3 f(n-2)+4)+4 \\
& =3^{2} f(n-2)+2 \cdot 4+4=3^{2}(3 f(n-3)+4)+3 \cdot 4+4 \\
& =3^{3} f(n-3)+\left(3^{2}+3+1\right) \cdot 4 \\
& \vdots \\
& =3^{n} f(0)+\left(3^{n-1}+3^{n-2}+\cdots+1\right) \cdot 4 \\
& =\frac{3^{n}-1}{2} \cdot 4 \\
& =2 \cdot\left(3^{n}-1\right) .
\end{aligned}
$$

Alternative solution: We try the homogenization $g(n)=3 g(n-1), f(n)=g(n)+c$. Solving for c we obtain $c=3 c+4$ from where $c=-2$. Therefore $g(n)=3 g(n-1)=\cdots=3^{n} g(0)=3^{n}(f(0)+2)=2 \cdot 3^{n}$, so $f(n)=2 \cdot 3^{n}-2$.
4. Let $f(n)$ be the number of all length- n strings with symbols $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ in which every B is immediately followed by a C (e.g., BCAC is counted but ACAB is not). Find the value of a for which $f(n)$ is $\Theta\left(a^{n}\right)$.

Solution: There are three types of strings counted by $f(n)$: Those that start with an A of which there are $f(n-1)$, those that start with a C of which there are also $f(n-1)$, and those that start with a B immediately followed by a C, of which there are $f(n-2)$. Therefore f satisfies the recurrence $f(n)=2 f(n-1)+f(n-2)$ for all $n \geq 2$. Solutions of the form $f(n)=x^{n}$ must therefore satisfy $x^{2}-2 x-1=0$. There are two such solutions: $x_{1}=1+\sqrt{2}$ and $x_{2}=1-\sqrt{2}$. The solution of the recurrence must then be of the form $f(n)=c(1+\sqrt{2})^{n}+d(1-\sqrt{2})^{n}$, where c and d should be chosen to satisfy the initial conditions. Regardless of the values of c and $d, f(n)$ is $\Theta\left((1+\sqrt{2})^{n}\right)$, so $a=1+\sqrt{2}$.

