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University of Ottawa, Winter 2023

Practice Midterm 1

1. Prove that for every integer n there exists an integer k such that |n2 − 5k| ≤ 1. (Hint: What is n2 mod 5?)

Solution: First we check that for all n, n2 mod 5 equals 0, 1 or 4:

n mod 5 0 1 2 3 4

n2 mod 5 0 1 4 4 1

Since 4 ≡ −1 (mod 5) it follows that for every n, n2 is congruent to 0, 1, or −1 modulo 5. Therefore n2 is
of the form 5k or 5k − 1 or 5k + 1 for some integer k. In all cases |n2 − 5k| ≤ 1.

2. What is 1 + (1 + 2) + (1 + 2 + 3) + · · ·+ (1 + 2 + 3 + · · ·+ 1000)?

Solution: The sum of the first k integers is k(k + 1)/2 = 1
2k

2 + 1
2k, so

1 + (1 + 2) + · · ·+ (1 + 2 + 3 + · · ·+ n) = 1
2(12 + 22 + · · ·+ n2) + 1

2(1 + 2 + · · ·+ n)

= 1
2(13n

3 + 1
2n

2 + 1
6n) + 1

2(12n
2 + 1

2n)

= 1
6n

3 + 1
2n

2 + 1
3n

using the formulas for the sum of the first n squares of integers and the sum of the first n integers, respectively.
(Notice that this expression gives the correct answer for n = 0, 1, and 2.) Plugging in n = 1000 we obtain
the answer 1

6 · 109 + 1
2 · 106 + 1

3 · 103 = 167, 167, 100.

Alternative solution: as 1+2+ · · ·+n = n(n+1)/2 we may guess that 1+(1+2)+ · · ·+(1+2+3+ · · ·+n)
has the form an3 + bn2 + cn + d. Plugging in n = 0, 1, 2, 3 we get that a, b, c, d must satisfy

d = 0

a + b + c + d = 1

8a + 4b + 2c + d = 1 + (1 + 2) = 4

27a + 9b + 3c + d = 4 + (1 + 2 + 3) = 10

Eliminating first d and then c we get 6a+ 2b = 2 and 24a+ 6b = 7. This solves to 2b = 1. Therefore b = 1/2.
Plugging back in we get a = 1/6 and c = 1/3.

We now verify that the sum equals 1
6n

3 + 1
2n

2 + 1
3n by induction on n. The base case n = 1 was already

checked. As for the inductive step we assume the claim is true for n and verify it for n + 1:

1 + (1 + 2) + · · ·+ (1 + · · ·+ (n + 1)) = 1
6n

3 + 1
2n

2 + 1
3n + (1 + · · ·+ (n + 1))

= 1
6n

3 + 1
2n

2 + 1
3n +

(n + 1)(n + 2)

2
= 1

6(n3 + 3n2 + 3n + 1) + 1
2(n2 + 2n + 1) + 1

3(n + 1)

= 1
6(n + 1)3 + 1

2(n + 1)2 + 1
3(n + 1).

Plugging in n = 1000 we obtain the same answer as above.

3. Find a closed-form expression for the recurrence f(n + 1) = 2f(n) + 2n−1, f(1) = 0.

Solution: We guess a solution for f(n) by iterating the formula:

f(n) = 2f(n− 1) + 2n−2

= 2(2f(n− 2) + 2n−3) + 2n−2 = 22 · f(n− 2) + 2 · 2n−2

= 22 · (2f(n− 3) + 2n−4) + 2 · 2n−2 = 23 · f(n− 3) + 3 · 2n−2.



This suggests the guess f(n) = 2n−1 · f(1) + (n− 1) · 2n−2 = (n− 1) · 2n−2.

We now prove that f(n) = (n− 1) · 2n−2 by induction on n. When n = 1, f(1) = 0 and (n− 1) · 2n−2 = 0.
Now assume f(n) = (n− 1) · 2n−2 for some n ≥ 1. Then

f(n + 1) = 2f(n) + 2n−1 = 2 · (n− 1) · 2n−2 + 2n−1 = n · 2n−1

so the formula must be correct for all n.

4. You have overhang blocks 10, 11, up to n units long, one of each kind. They are stacked over the
table from smallest to largest so that their left edges align. (See diagram for n = 13). Show that
the configuration is not stable when n is sufficiently large.

10
11
12
13

Solution: We assume all blocks have the same weight. If instead a block’s weight is proportional its length
the calculation is a bit more complicated but the conclusion is similar.

The center of mass of all the blocks, measured from the left edge of the blocks, is at position

P (n) =
1

2n
· (10 + 11 + · · ·+ n) =

1

2n

(
(1 + · · ·+ n)− (1 + · · ·+ 9)

)
=

1

2n

(n(n + 1)

2
− 9 · 10

2

)
= Ω(n)

so when n is sufficiently large, P (n) > 10, the center of mass falls to the right of the edge of the table, and
the configuration is not stable.

Practice Midterm 2

1. Show that for every integer n, if n3 + n is divisible by 3 then 2n3 + 1 is not divisible by 3.

Solution: We can prove this proposition by cases depending on the residue of n3+n modulo 3. If n ≡ 0 mod 3
then n3 + n is divisible by 3, while 2n3 + 1 ≡ 1 mod 3, so 2n3 + 1 is not divisible by 3, so the proposition
holds. If n ≡ 1 mod 3 then n3 +n ≡ 2 mod 3, so n3 +n is not divisible by 3 and the proposition holds again.
If n ≡ 2 mod 3, then n3 + n ≡ 1 mod 3 and n3 + n is not divisible by 3 again.

2. Let f(n) = 1 + 1/3 + 1/5 + · · ·+ 1/(2n− 1). Show that f is Θ(log n).

Solution: f(n) dominates the value of the integral
∫ 2n
1 (1/x)dx.

1 3 5
x

1/x

It is dominated by the value of the same integral after subtracting the light gray area which is at most 2.
Therefore ∫ 2n+1

1

1

x
dx ≤ f(n) ≤

∫ 2n+1

1

1

x
dx + 2.

The integral evaluates to ln(2n+1), so ln(2n+1) ≤ f(n) ≤ ln(2n+1)+2 so f(n) is Θ(ln(2n+1)) = Θ(log n).

Alternative solution: On the one hand, f(n) ≤ 1 + 1/2 + 1/3 + · · ·+ 1/(2n) = H(2n), where H(n) is the
n-th harmonic number from Lecture 7. On the other hand, f(n) ≥ 1/2 + 1/4 + 1/6 + · · ·+ 1/(2n) = 1

2H(n).
Therefore 1

2H(n) ≤ f(n) ≤ H(2n). In Lecture 7 we showed that H(n) is Θ(log n), so H(2n) is also
Θ(log 2n) = Θ(log n). Therefore f(n) must be Θ(log n) as well.

3. An n × n plot of land (n is a power of two) is split in two equal parts by a North-South fence.
The Western half is sold and the Eastern half is split in two equal parts by an West-East fence.
The same procedure is applied to the remaining (n/2)× (n/2) plots until 1×1 plots are obtained
(see n = 4 example). How many units of fence are used?

S
O
L
D

S
O
L
D

S
O
L
D



Solution: The amount T (n) of fence used satisfies the recurrence T (n) = 2T (n/2) + 3n/2 for n > 1, with
T (1) = 0. We can unwind the recurrence as follows:

T (n) = 2T (n/2) + 3/2 · n
= 2(2T (n/22) + 3/2 · n/2) + 3/2 · n = 22T (n/22) + 3/2 · 2n
= 22(2T (n/23) + 3/2 · n/22) + 3/2 · 2n = 23T (n/23) + 3/2 · 3n

After log n steps we expect to obtain T (n) = n · T (1) + 3
2n log n = 3

2n log n. We confirm the correctness of
this guess by induction. For the base case n = 1, T (1) = 0 as desired. For the inductive step we assume
T (k) = 3

2k log k for all k < n that are powers of two. Then

T (n) = 2T (n/2) + 3n/2 = 2 · 3

2
· n

2
log(n/2) +

3n

2
=

3n

2
· (log n− 1) +

3n

2
=

3

2
· n log n

when n is a power of two, concluding the inductive step.

4. Sort these three functions in increasing order of growth:
√
n · log n, n/

√
log n,

√
n · log n. For your sorted

list f, g, h show that f is o(g) and g is o(h).

Solution:
√
n log n is o(

√
n log n) because the ratio

√
n log n/

√
n log n equals 1/

√
log n, which eventually be-

comes and stays smaller than any given constant.
√
n log n is o(n/

√
log n) because the ratio

√
n log n/(n/

√
log n)

equals (log n)3/2/n1/2. In Lecture 7 we showed that (log n)a is o(nb) for any constants a, b > 0, so this ratio
becomes and stays smaller than any constant when n is sufficiently large.

Practice Midterm 3

1. Bob has received from Alice the RSA ciphertext c = 2. The modulus is n = pq with p = 3 and q = 5. The
encryption key is e = 3.

(a) Calculate Bob’s decryption key d.

Solution: e and d must satisfy the equation ed ≡ 1 (mod (p−1)(q−1)), so 3d ≡ 1 (mod 8). Therefore
d is the multilpicative inverse of 3 modulo 8. We find it using extended Euclid’s algorithm: 8 = 2 · 3 + 2
and 3 = 2 + 1, so 1 = 3− 2 = 3− (8− 2 · 3) = −8 + 3 · 3. Therefore d = 3.

(b) Decrypt Alice’s message m.

Solution: The decrypted message is cd = 23 = 8 (mod 15). (You can verify that me = 83 ≡ 2 = c
(mod 15).)

2. What is the largest integer n for which

n ≤ 1 +
1√
2

+
1√
3

+ · · ·+ 1√
9999

?

Solution: Let S denote the sum on the right. The area under the first 9999 rectangles is at least as large
as the area under the curve, so

S ≥
∫ 10000

1

dx√
x

= 2
√
x
∣∣10000
1

= 200− 2 = 198.

1 2 3 4 5
x

1/
√
x



If the area L under the light rectangles is removed from S then the dark rectangles fit under the curve, so
S − L ≤ 198. The light rectangles stack up to a rectangle of width 1 and height less than 1, so L < 1.
Therefore 198 ≤ S < 199 and n = 198.

3. Find a closed-form expression for the recurrence f(n) = 3f(n− 1) + 4, f(0) = 0.

Solution: We unwind the recurrence:

f(n) = 3f(n− 1) + 4 = 3(3f(n− 2) + 4) + 4

= 32f(n− 2) + 2 · 4 + 4 = 32(3f(n− 3) + 4) + 3 · 4 + 4

= 33f(n− 3) + (32 + 3 + 1) · 4
...

= 3nf(0) + (3n−1 + 3n−2 + · · ·+ 1) · 4

=
3n − 1

2
· 4

= 2 · (3n − 1).

Alternative solution: We try the homogenization g(n) = 3g(n − 1), f(n) = g(n) + c. Solving for c we
obtain c = 3c + 4 from where c = −2. Therefore g(n) = 3g(n− 1) = · · · = 3ng(0) = 3n(f(0) + 2) = 2 · 3n, so
f(n) = 2 · 3n − 2.

4. Let f(n) be the number of all length-n strings with symbols {A, B, C} in which every B is immediately followed
by a C (e.g., BCAC is counted but ACAB is not). Find the value of a for which f(n) is Θ(an).

Solution: There are three types of strings counted by f(n): Those that start with an A of which there are
f(n−1), those that start with a C of which there are also f(n−1), and those that start with a B immediately
followed by a C, of which there are f(n− 2). Therefore f satisfies the recurrence f(n) = 2f(n− 1) + f(n− 2)
for all n ≥ 2. Solutions of the form f(n) = xn must therefore satisfy x2 − 2x − 1 = 0. There are two
such solutions: x1 = 1 +

√
2 and x2 = 1 −

√
2. The solution of the recurrence must then be of the form

f(n) = c(1 +
√

2)n + d(1−
√

2)n, where c and d should be chosen to satisfy the initial conditions. Regardless
of the values of c and d, f(n) is Θ((1 +

√
2)n), so a = 1 +

√
2.


