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University of Ottawa, Winter 2023

Practice Midterm Exam 2 Solutions

Practice Midterm 1

1. Prove that for every integer n there exists an integer k such that |n? — 5k| < 1. (Hint: What is n? mod 57?)

Solution: First we check that for all n, n? mod 5 equals 0, 1 or 4:

n mod 5 ‘0 1
n2m0d5‘0 1

2 3 4
4 4 1

2 2

Since 4 = —1 (mod 5) it follows that for every n, n® is congruent to 0, 1, or —1 modulo 5. Therefore n= is

of the form 5k or 5k — 1 or 5k + 1 for some integer k. In all cases |n? — 5k| < 1.
. Whatis 1+ (1+2)+ (1+2+43) 4+ (1+2+3+--+1000)?
Solution: The sum of the first k integers is k(k +1)/2 = $k* + 3k, so

I+(1+2)+ -+ @ +2+3++n) =112 +22 4+ +n?)+ 11 +2+-+n)
=1(n®+ I+ In)+ 1 (3n% + In)
= %n?’ + %nQ + %n
using the formulas for the sum of the first n squares of integers and the sum of the first n integers, respectively.

(Notice that this expression gives the correct answer for n = 0, 1, and 2.) Plugging in n = 1000 we obtain
the answer ¢ -10% + - 106+ 1. 10% = 167,167, 100.

Alternative solution: as 1+2+---4+n =n(n+1)/2 we may guess that 1+ (1+2)+---+(1+2+3+---+n)
has the form an® + bn? + cn + d. Plugging in n = 0,1,2,3 we get that a, b, ¢, d must satisfy
d=0
a+b+c+d=1
8a+4b+2 +d=1+(1+2)=4
27a +9b+3c+d=4+(1+2+3)=10

Eliminating first d and then ¢ we get 6a+ 2b = 2 and 24a + 6b = 7. This solves to 2b = 1. Therefore b = 1/2.
Plugging back in we get a = 1/6 and ¢ = 1/3.

We now verify that the sum equals %n?’ + %nQ + %n by induction on n. The base case n = 1 was already
checked. As for the inductive step we assume the claim is true for n and verify it for n 4 1:

I+ (1+2) 4+ A+ m+1) = +In? +in+ 1+ +(n+1))

(n+1)(n+2)

:%n3+%n2+%n+ 5
=i +3n+3n+ 1)+ 3(n*+2n+1)+i(n+1)
=in+1P+in+1)2+1(n+1).

Plugging in n = 1000 we obtain the same answer as above.
. Find a closed-form expression for the recurrence f(n + 1) = 2f(n) + 271, f(1) = 0.

Solution: We guess a solution for f(n) by iterating the formula:
f(n) =2f(n—1)+2""
=2(2f(n—2)+2"3) 4272 =22 f(n —2) 42272
=22.(2f(n—-3)+2"1 +2.2"2=23. f(n—-3)+3-2"2



This suggests the guess f(n) =2""1. f(1)+ (n—1)-2"2=(n—1)-2"2
We now prove that f(n) = (n — 1) - 2"~2 by induction on n. When n =1, f(1) =0 and (n — 1) - 272 = 0.
Now assume f(n) = (n — 1) - 2”2 for some n > 1. Then
fn+1) =2fn)+2" 1 =2-(n—-1).- 2" 242" L =p.2""}
so the formula must be correct for all n.

4. You have overhang blocks 10, 11, up to n units long, one of each kind. They are stacked over the
table from smallest to largest so that their left edges align. (See diagram for n = 13). Show that L1
the configuration is not stable when n is sufficiently large.

Solution: We assume all blocks have the same weight. If instead a block’s weight is proportional its length
the calculation is a bit more complicated but the conclusion is similar.

The center of mass of all the blocks, measured from the left edge of the blocks, is at position

P(n):i-(10+11+---+n):i((1+---+n)—(1+---+9))

1 (n(n—i—l) 9-10
2n 2n

T\ 2 5-) =)

so when n is sufficiently large, P(n) > 10, the center of mass falls to the right of the edge of the table, and
the configuration is not stable.

Practice Midterm 2
1. Show that for every integer n, if n3 4+ n is divisible by 3 then 2n3 + 1 is not divisible by 3.

Solution: We can prove this proposition by cases depending on the residue of n3+n modulo 3. If n = 0 mod 3
then n3 + n is divisible by 3, while 2n% + 1 = 1 mod 3, so 2n® 4 1 is not divisible by 3, so the proposition
holds. If n = 1 mod 3 then n? +n = 2 mod 3, so n® + n is not divisible by 3 and the proposition holds again.
If n = 2 mod 3, then n® +n =1 mod 3 and n® + n is not divisible by 3 again.

2. Let f(n)=1+1/34+1/5+---+1/(2n — 1). Show that f is ©(logn).

Solution: f(n) dominates the value of the integral ff”(l/x)d:z:.

1/x

8

It is dominated by the value of the same integral after subtracting the light gray area which is at most 2.

Therefore
41 2n+1
/ —dz < f(n) < / —dx + 2.
1 x 1 x

The integral evaluates to In(2n+1), so In(2n+1) < f(n) <In(2n+1)+2so f(n) is O(In(2n+1)) = O(logn).

Alternative solution: On the one hand, f(n) <1+4+1/241/3+---4+1/(2n) = H(2n), where H(n) is the
n-th harmonic number from Lecture 7. On the other hand, f(n) >1/241/4+1/6+---+1/(2n) = $H(n).
Therefore $H(n) < f(n) < H(2n). In Lecture 7 we showed that H(n) is ©(logn), so H(2n) is also
©(log2n) = ©(logn). Therefore f(n) must be ©(logn) as well.

3. An n x n plot of land (n is a power of two) is split in two equal parts by a North-South fence.
The Western half is sold and the Eastern half is split in two equal parts by an West-East fence.
The same procedure is applied to the remaining (n/2) x (n/2) plots until 1 x 1 plots are obtained
(see n = 4 example). How many units of fence are used?

SOLD
SOLD|SOLD



Solution: The amount 7T'(n) of fence used satisfies the recurrence 7'(n) = 27'(n/2) 4+ 3n/2 for n > 1, with
T(1) = 0. We can unwind the recurrence as follows:

T(n)=2T(n/2)+3/2-n
=2(2T(n/2%) +3/2-n/2) +3/2-n = 2°T(n/2*) +3/2 - 2n
=22(2T(n/2%) +3/2-n/2%) +3/2-2n = 2°T(n/2) +3/2 - 3n
After logn steps we expect to obtain T'(n) =n-T(1) + %n logn = %nlog n. We confirm the correctness of

this guess by induction. For the base case n = 1, T(1) = 0 as desired. For the inductive step we assume
T(k) = 3klogk for all k < n that are powers of two. Then

3n  3n 3n 3
log(n/2) + CRuiC (logn — 1) + 5 =3 -nlogn

T(n)=2T(n/2)+3n/2=2-

IV
AV IS

when n is a power of two, concluding the inductive step.

4. Sort these three functions in increasing order of growth: /n -logn, n/y/logn, v/n-logn. For your sorted
list f, g, h show that f is o(g) and g is o(h).

Solution: y/nlogn is o(y/nlogn) because the ratio v/nlogn/y/nlogn equals 1/1/log n, which eventually be-
comes and stays smaller than any given constant. y/n logn is o(n/y/log n) because the ratio v/nlogn/(n/v/logn)
equals (logn)3/2/n'/2. In Lecture 7 we showed that (logn)® is o(n®) for any constants a,b > 0, so this ratio
becomes and stays smaller than any constant when n is sufficiently large.

Practice Midterm 3
1. Bob has received from Alice the RSA ciphertext ¢ = 2. The modulus is n = pg with p = 3 and ¢ = 5. The

encryption key is e = 3.

(a) Calculate Bob’s decryption key d.

Solution: e and d must satisfy the equation ed =1 (mod (p—1)(¢—1)),s03d =1 (mod 8). Therefore
d is the multilpicative inverse of 3 modulo 8. We find it using extended Euclid’s algorithm: 8§ =2-3+2
and3=24+1,s01=3-2=3—-(8—-2-3)=—8+3-3. Therefore d = 3.

(b) Decrypt Alice’s message m.

Solution: The decrypted message is ¢? = 23 = 8 (mod 15). (You can verify that m¢ = 8 =2 = ¢
(mod 15).)

2. What is the largest integer n for which

1 1 1
n<l4+—=+ -+ +—=7
V2 V3 v/9999

Solution: Let S denote the sum on the right. The area under the first 9999 rectangles is at least as large
as the area under the curve, so

S > / Ty 199 — 200 — 2 = 198
= _— = €T = - == .
1 Vi !

1/VE

[ it




If the area L under the light rectangles is removed from S then the dark rectangles fit under the curve, so
S — L < 198. The light rectangles stack up to a rectangle of width 1 and height less than 1, so L < 1.
Therefore 198 < S < 199 and n = 198.

. Find a closed-form expression for the recurrence f(n) =3f(n—1)+4, f(0) =

Solution: We unwind the recurrence:

fn)=3f(n—1)+4=3Bf(n—2)+4)+4
=32f(n—2)+2-44+4=3*3f(n—3) +4)+3-4+4
=3%f(n—3)+(3*+3+1) 4

=3"f0)+ (3" ' +3" 24+ +1)-4

_ 3" —1 4
2
=2.(3" - 1).
Alternative solution: We try the homogenization g(n) = 3g(n — 1) f(n) = g(n) + ¢. Solving for ¢ we
obtain ¢ = 3¢+ 4 from where ¢ = —2. Therefore g(n) =3g(n—1) =--- =3"¢(0) = 3"(f(0) +2) =2-3", so

fln)=2-3"—2.

. Let f(n) be the number of all length-n strings with symbols {A, B, C} in which every B is immediately followed
by a C (e.g., BCAC is counted but ACAB is not). Find the value of a for which f(n) is ©(a™).

Solution: There are three types of strings counted by f(n): Those that start with an A of which there are
f(n—1), those that start with a C of which there are also f(n—1), and those that start with a B immediately
followed by a C, of which there are f(n —2). Therefore f satisfies the recurrence f(n) = 2f(n—1)+ f(n—2)
for all n > 2. Solutions of the form f(n) = 2™ must therefore satisfy 2> — 20 — 1 = 0. There are two
such solutions: x1 = 1+ v/2 and 22 = 1 — v/2. The solution of the recurrence must then be of the form
f(n) = c¢(1++v/2)" +d(1—+/2)", where ¢ and d should be chosen to satisfy the initial conditions. Regardless
of the values of ¢ and d, f(n) is O((1 +v2)"), s0 a = 1 + /2.



