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1 Die hard, once and for all

You are standing next to a water source. You have two empty jugs: A 3 litre jug and a 5 litre jug with no
marks on them. You must fill the larger jug with precisely 4 litres of water. Can you do it?

This scenario is straight out of the 1995 classic “Die Hard 3: With a Vengeance” featuring Bruce Willis
and Samuel L. Jackson. Should they fail to complete this task within 5 minutes, a bomb goes off and New
York City is obliterated. In the nick of time, Bruce and Samuel come up with a solution:

large jug small jug action

— 3ℓ fill up small jug from source
3ℓ — transfer water into large jug
3ℓ 3ℓ fill up small jug
5ℓ 1ℓ top up large jug from small jug
— 1ℓ spill large jug
1ℓ — transfer water into large jug
1ℓ 3ℓ fill up small jug
4ℓ — done!

The rumour is that in Die Hard 4, Bruce and Samuel will be given a 21 litre and a 26 litre jug; in Die
Hard 5, a 899 litre and 1,147 litre jug; and in Die Hard 6: “Die hard, once and for all”, a 6 litre and 9 litre
jug. What should they do?

The Die Hard state machine The water jug game can be described by a state machine. The states
are pairs of numbers (x, y) describing the amount of water in the large and smaller jug, respectively. The
transitions represent the allowed pourings. The initial state is (0, 0), and we are interested in reaching a
state of the form (4, y).

The Die Hard 3 state machine is small enough that we can represent it with a diagram. The sequence
of transitions start → 2 → 3 → · · · → 9 achieves the desired objective.
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In general, the jugs can be large and we need to describe the state machine mathematically. If a and b
are the jug capacities the possible states are the pairs

(x, y) such that 0 ≤ x ≤ a and 0 ≤ y ≤ b.
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There are at most six transitions out of each state (represented by the horizontal, vertical, and diagonal
arrows in the picture) given by the pouring rules:

1. Spill a jug: The spilled jug now contains 0 litres, while the contents of the other jug stay the same.

(x, y) → (0, y) (T1)

(x, y) → (x, 0) (T2)

2. Fill up a jug from the source: The filled up jug now contains as much water as its capacity. The
contents of the other jug stay the same.

(x, y) → (a, y) (T3)

(x, y) → (x, b) (T4)

3. Transfer water between jugs: Water can be poured from one jug into the other until one of them
is full or empty. These transitions are trickier to write down, but the effort will pay off later on.

If water is poured from the first into the second jug then two things can happen. If the total amount
of water does not exceed the capacity b of the second jug, in which case the second one will contain
x+ y litres. Otherwise, the second jug fills up to its capacity b, and x+ y − b litres of water remain
in the first jug:

(x, y) →

{
(0, x+ y), if x+ y ≤ b,

(x+ y − b, b), if x+ y > b.
(T5)

We have analogous transitions for pouring water from the second jug into the first one:

(x, y) →

{
(x+ y, 0), if x+ y ≤ a,

(a, x+ y − a), if x+ y > a.
(T6)

We can now formulate the water jug game with a v litre target question mathematically: Is there a
sequence of transitions that reaches a state of the type (x, v) or (v, y)? If you play a bit more with the
Die Hard 3 state machine, you will notice that this is possible for any target v (as long as it is an integer
between 0 and 5). But what happens in the other movies?

In Die Hard 6 something different happens: No matter what you do, the amount of water in either jug is
always 3, 6, or 9 litres. To describe this behaviour we introduce the concept of integer linear combination.

Integer linear combinations

A number c is an integer linear combination (in short, combination) of a and b if there exist integers s and
t such that c = s · a+ t · b. For example,

• 2 is a combination of 4 and 6 because 2 = (−1) · 4 + 1 · 6.

• 1 is a combination of 3 and 5 because 1 = 2 · 3 + (−1) · 5.

• 2 is a combination of 2 and 6 because 2 = 1 · 2 + 0 · 6.

We can now state an invariant of the Die Hard state machines.

Invariant 1. The amount of water in each jug is always a combination of a and b.

To prove this invariant, the following property of integer combinations will be useful.

Lemma 1. If x and y are combinations of a and b, then any combination of x and y is also a combination
of a and b.
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For example, 6 and 9 are both combinations of 12 and 15:

6 = 3 · 12− 2 · 15
9 = 2 · 12− 15

and 3 is a combination of 6 and 9:
3 = −6 + 9.

By combining the equations we can write 3 as a combination of 12 and 15:

3 = −6 + 9 = −(3 · 12− 2 · 15) + (2 · 12− 15) = −12 + 15.

We can generalize this reasoning into a proof of Lemma 1.

Proof of Lemma 1. If x and y are combinations of a and b, we can write x = s ·a+ t · b and y = s′ ·a+ t′ · b
for some integers s, t, s′, t′. Then any combination of x and y has the form

p · x+ q · y = p · (sa+ tb) + q · (s′a+ t′b) = (ps+ qs′) · a+ (pt+ qt′) · b

so it is a combination of a and b.

We will now apply Lemma 1 to prove the invariant.

Proof of Invariant 1. We will prove that the invariant holds in the initial state and that it is preserved by
the transitions. It then follows by induction that the invariant holds after an arbitrary number of steps.

Initial state: Initially, each jug has 0 liters of water and 0 = 0 · a+ 0 · b.
Transitions: Assume the invariant holds in state (x, y). namely both x and y are combinations of a

and b. We show that this remains true after any possible transition (x, y) → (x′, y′). In all the transitions
T1-T6, x′ and y′ are combinations of x, y, a, b. By Lemma 1, x′ and y′ are therefore combinations of a
and b only.

Greatest common divisors

We say d divides a if a = kd for some integer k. For example, 2 divides 4 and −6 but 2 does not divide 5;
4 does not divide 2; and every number divides zero.

Notice that d divides a number a if and only if a is a combination of d and zero.

Lemma 2. If d divides a and b then d divides all combinations of a and b.

Proof. If d divides a and b then a and b are combinations of d and zero. By Lemma 1 so is any combination
of a and b, so d divides this combination.

The greatest common divisor (GCD) of two integers a, b is the largest integer d so that d divides a
and d divides b. We write gcd(a, b) for the GCD of a and b. For example, gcd(2, 6) = 2, gcd(4, 6) = 2,
gcd(3, 5) = 1, gcd(0, 6) = 6.

Combining Invariant 1 and Lemma 2, we obtain a useful corollary:

Corollary 3. gcd(a, b) always divides the amount of water in each jug.

In particular, a 6 litre jug and a 9 litre jug can never measure 4 litres of water:

Corollary 4. In Die Hard 6, Bruce dies.
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2 Euclid’s algorithm

Euclid’s algorithm is a procedure for calculating the GCD of two numbers. It was invented by the Euclideans
around 3,000 years ago and it still the fastest procedure for this task. To explain Euclid’s algorithm, we
need to recall division with remainder.

Theorem 5. Let n and d be integers with d > 0. There exists unique integers q and r such that

n = q · d+ r and 0 ≤ r < d.

For example, if n = 13 and d = 3, we can write 13 = 4 · 3 + 1. Moreover, q = 4 and r = 1 are unique
assuming r is in the range 0 ≤ r < d.

The numbers q and r can be calculated by the usual “division with remainder rule” that you learned
in school.

Proof. First, we show existence: Let q be the largest integer such that qd ≤ n. That means (q + 1)d > n.
Then 0 ≤ n− qd < d. Set r = n− qd.

Now we show uniqueness: Suppose we can write n in the desired form in two different ways:

n = qd+ r, 0 ≤ r < d

n = q′d+ r′, 0 ≤ r′ < d.

Then qd+ r = q′d+ r′, so (q − q′)d = r′ − r. Therefore r′ − r divides d. Since 0 ≤ r, r′ < d we must have
−d < r′ − r < d. The only number in this range that divides d is zero, so r′ − r = 0 and q′ − q = 0. It
follows that q′ = q and r′ = r, so the two representations are the same.

Euclid’s algorithm is a recursive algorithm for calculating the GCD of positive integers.

Euclid’s algorithm E(n, d), where n, d are integers such that n ≥ d ≥ 0.
If d = 0, return n.
Otherwise, write n = qd+ r where 0 ≤ r < d. Return E(d, r).

Let’s apply Euclid’s algorithm to calculate the GCD of 1147 and 899:

E(1147, 899) = E(899, 248) because 1147 = 1 · 899 + 248

= E(248, 155) because 899 = 3 · 248 + 155

= E(155, 93) because 248 = 1 · 155 + 93

= E(93, 62) because 155 = 1 · 93 + 62

= E(62, 31) because 93 = 1 · 62 + 31

= E(31, 0) because 62 = 2 · 31 + 0

= 31.

How can we be sure that Euclid’s algorithm indeed outputs the GCD of n and d? This is a theorem
that we will have to prove.

To analyze Euclid’s algorithm we can model it as a state machine. The states are pairs of integers.
The transitions have the form (n, d) → (d, r) where r is the remainder of dividing n by d assuming d ≥ 0.

Invariant 2. The gcd of the state stays the same throughout the execution of Euclid’s algorithm.

Proof. Consider any transition (n, d) → (d, r). Recall that n is of the form q · d+ r. By Corollary 2, every
common divisor of d and r also divides their integer combination n = qd+ r, so it is a common divisor of
n and d.

By Lemma 2 again, every common divisor of n and d also divides their integer combination r = n−q ·d,
so it is a common divisor of d and r.

It follows that the common divisors of n and d are the same as those of d and r, so the gcd of both
pairs must be the same.
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Invariant 2 shows that Euclid’s algorithm preserves the gcd of its inputs throughout its execution. Is
this a good enough reason to conclude that the algorithm is correct? Not really, because for all we know
the algorithm may end up running forever! We must also argue that the algorithm eventually terminates.

Theorem 6. For all integers n ≥ d ≥ 0, E(n, d) terminates and outputs gcd(n, d).

Proof. For termination, we observe that the value of d decreases in each transition but remains non-negative
because d is replaced by the remainder r which is always smaller than d but non-negative. Therefore the
algorithm must terminate after a finite number of steps.

The algorithm terminates when it reaches a state of the form (n, 0) in which case it outputs n =
gcd(n, 0). By Invariant 2, its output must equal the gcd of its inputs.

3 How to be a star in any Die Hard movie

Corollary 3 says that if the amount v is not a multiple of the gcd of the jug capacities a and b, then Bruce
dies for sure. If it is not, can he actually survive?

To answer this question, let’s look at what happened in Die Hard 3 again. Observe the curious
zigzagging pattern taken by our state machine:
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In words, we keep zigzagging up-diagonal-up-diagonal until we hit the right boundary. Then we move
all the way left, continue along the diagonal, and keep going until we get lucky. We can rephrase this
strategy as a candidate algorithm:

Algorithm DieHard
inputs: jug capacities a, b and target v.
1 Repeat until jug A contains v litres:
2 Fill up jug B.
3 Pour as much as possible from jug B into jug A.
4 If jug A is full,
5 Spill jug A.
6 Pour out the remaining contents of jug B into jug A.

How do we know that this algorithm works? Notice how in a single iteration of the loop 2-6, jug B is
filled up once and spilled once. Since all the water from jug B ends up being poured into jug A, after the
s-th iteration of the loop jug A has received s · b litres from jug B. Owing to step 5, some amount has been
poured out of jug A. We don’t know how much this is, but it is always an integer multiple of its capacity
a. In summary,

After s iterations, jug A contains s · b− t · a litres for some nonnegative integer t.

5



Let’s see how this checks out with our Die Hard 3 scenario:

iteration transitions water in large jug A

1 start → 2 → 3 3 = 1 · 3− 0 · 5
2 3 → 4 → 5 → 6 → 7 1 = 2 · 3− 1 · 5
3 7 → 8 → 9 4 = 3 · 3− 1 · 5

Notice that the number t is uniquely determined by s, a, and b in every iteration. If it was any smaller
the large jug would overfill, and it was any smaller the amount of water in it would be negative! We can
summarize our reasoning in the following lemma.

Lemma 7. If 0 < v < a and v = s · b − t · a for some non-negative integers s, t, then algorithm DieHard
has terminated within s iterations.

Proof. If algorithm DieHard goes on for s iterations, s · b litres have been poured into jug A, and t′ ·a litres
have been poured out of it for some integer t′. The amount of water in jug A after s iterations is then
s · b− t′ · a = v + (t− t′) · a.

We claim that t′ must equal t: If t′ > t then jug A would contain v − a litres which is negative, while
if t′ < t then jug A would contain v + a litres, which exceeds in capacity. Both cases give a contradiction.
It follows that t′ = t and jug A contains exactly v litres after s iterations.

Lemma 7 tells us that if you want to be a Die Hard star, all you need to do is write the target v as
s · b− t · a. The algorithm will do the rest of the work. We know that this is impossible unless v happens
to a multiple of gcd(a, b). The converse is also true:

Lemma 8. For all a and b there exist non-negative integers s and t such that gcd(a, b) = s · b− t · a.

We can now forego the tedium of watching Die Hard 4, 5, 6, 7 up to infinity because we know what
will happen:

Theorem 9. Assume a ≥ b. Bruce lives if and only if 0 ≤ v ≤ a and gcd(a, b) divides v.

Proof. Assume Bruce lives. By Corollary 3, gcd(a, b) must divide v. Clearly v must also be within the size
of the larger bin.

Now assume gcd(a, b) divides v and 0 ≤ v ≤ a. If v = 0 Bruce wins right away and if v = a Bruce
wins after filling in the large jug. Otherwise, 0 < v < a. By Lemma 8, gcd(a, b) = s · b − t · a, so
v = k · gcd(a, b) = (ks) · b− (kt) · a for some integer k. Bruce lives by Lemma 7.

We are almost done. All that remains is to prove Lemma 8. This can be done by analyzing the following
algorithm, whose purpose it is to compute the numbers s and t.

Extended Euclid’s algorithm X(n, d), where n, d are integers such that n ≥ d ≥ 0.
If d = 0, return (1, 0).
Otherwise,

Write n = qd+ r where 0 ≤ r < d.
Calculate (s, t) = X(d, r).
Return (t, s− q · t).

Theorem 10. For every pair of integers n, d such that n > d ≥ 0, X(n, d) terminates and outputs a pair
of integers (s, t) such that gcd(n, d) = s · n+ t · d.
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Instead of proving this theorem, let us show on an example how s and t can be calculated by extending
the reasoning we used for Euclid’s algorithm. Let n = 73 and d = 50. Euclid’s algorithm goes through the
following steps:

E(73, 50) = E(50, 23) because 73 = 1 · 50 + 23 (E1)

= E(23, 4) because 50 = 2 · 23 + 4 (E2)

= E(4, 3) because 23 = 5 · 4 + 3 (E3)

= E(3, 1) because 4 = 1 · 3 + 1 (E4)

= 1.

We want to express 1 as an integer combination of 73 and 50. We start with the equation (E4), which
writes 1 as an integer combination of 4 and 3 and work backwards. We take (E4) and (E3) and cancel out
the 3 which occurs in both. To do this, we scale the (E3) by −1 on both sides and add (E4) to it to get

−1 · 23 + 4 = −5 · 4 + 1.

We can rewrite this as
−1 · 23 = −6 · 4 + 1, (1)

which is a representation of 1 as an integer combination of 23 and 4. We can now cancel out the 4 by
combining (E2) and (1): After multiplying (E2) by 6 on both sides and subtracting (1) we get

6 · 50− 1 · 23 = 12 · 23 + 1,

from where
6 · 50 = 13 · 23 + 1, (2)

which is a representation of 1 as an integer combination of 50 and 23. Finally, the 23 disappears if we
multiply (E1) by −13 and subtract (2) to obtain

−13 · 73 + 6 · 50 = −13 · 50 + 1

which gives us the desired integer combination

1 = −13 · 73 + 19 · 50.

Lemma 8 is almost the same as Theorem 10. The only difference is that Lemma 8 says that s and t
are non-negative, while Theorem 10 says nothing about signs. In this respect, Lemma 8 is more general
than Theorem 10: It provides a stronger conclusion under the same assumptions. So how can we use
Theorem 10 to prove Lemma 8?

As usual, it helps to work through an example first. Suppose we want to write 4 = s · 3 − t · 5 for
non-negative s and t, but all we have is a representation with the wrong sign pattern, say

4 = −2 · 3 + 2 · 5.

What can we do to correct the signs? We can add 5 · 3 to the first term and subtract 3 · 5 from the second
term. Then

4 = (−2 + 5) · 3 + (2− 3) · 5 = 3 · 3− 1 · 5
which is exactly what we wanted. In general, this may not happen after one step but we can keep repeating
until we get what we want.

Proof of Lemma 8. By Theorem 10, there exist integers s and t such that gcd(a, b) = s · a+ t · b. Then for
every integer k,

(s+ kb) · a+ (t− ka) · b = sa+ tb = gcd(a, b).

No matter what the values of s and t are, when k is sufficiently large, s + kb is positive and t − ka is
negative. This gives us a representation of gcd(a, b) of the desired form.
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4 Prime decomposition

A number p > 1 is a prime if it has no divisors between 2 and p− 1. We all know that

Theorem 11. Every number greater than 1 has a unique prime factorization (in increasing order).

For example, 18 = 2 · 3 · 3 (existence) and there is no other way to write 18 as a product of primes.
Why is this always true?

The existence of prime factorizations is a consequence of strong induction.

Proof of existence of factorizations. The base case is that 2 has a prime factorization. Now assume all
numbers between 1 and n − 1 have a prime factorization. There are two cases for n. Either it is prime
and its prime factorization is itself, or it has a factor a between 2 and n− 1. The other factor n/a is also
between 2 and n− 1 so both a and b have a prime factorization. Their product gives a prime factorization
of n.

Uniqueness of prime factorization is trickier. In fact, there are alternative number systems in algebra
where prime factorizations are not unique. The integers are special in this way.

Let’s try to understand why the same number cannot be represented by different prime factorizations.
The idea is to argue by contradiction. Suppose for example that some number factors both as 2 · 3 · 3 · 7
and as 3 · 5 · 7. Then the two factorizations must be equal:

2 · 3 · 7 = 3 · 3 · 5.

Now we can cancel a 3 and a 7 from both sides to obtain

2 · 7 = 3 · 5.

This is clearly absurd, but why? It has to do with divisibility: 2 divides the number on the left but not
on the right. How do we know that 2 does not divide 3 · 5? This turns out to be a key property of
prime numbers: If 2 does not divide 3 and 2 does not divide 5, 2 cannot divide their product 3 · 5. In
contrapositive form, this says

Lemma 12. If p is a prime that divides ab, then p divides a or p divides b.

Proof. Assume that p divides ab but p does not divide a. We will show that p must divide b. Since p does
not divide a their only common divisor is 1, so gcd(p, a) = 1. By Lemma 8, 1 is a combination of p and a:

1 = s · p+ t · a for some s, t.

Multiplying both sides of this combination by b we get that b is a combination of p and ab:

b = sb · p+ t · ab

Since p divides ab, b must be a multiple of p:

ab = kp for some k, so b = sb · p+ tk · p = (sb+ tk) · p.

We now have all the ingredients to prove uniqueness of factorizations.

Proof of uniqueness of factorizations. Suppose for contradiction that some number has two factorizations
A and B. Then one of the prime factors p must appear more times in one factorization than in the other.
After possibly removing some copies of p from A and B we obtain two factorizations A′ and B′ of the same
number one of which contains a copy of p but the other one doesn’t. Suppose A′ is the one that contains
the copy of p. Then p divides A′ so p must divide B′. By Lemma 12, p must divide some prime that
appear in B′. As p is a prime that does not appear in B′ it cannot divide any of the primes that appear
in B′. This is a contradiction.
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Prime factorizations provide an alternative method for calculating GCDs. For example, if we want to
calculate the GCD of 12 and 18, we can write out the factorizations 12 = 2 · 2 · 3 and 18 = 2 · 3 · 3 and
calculate the GCD as the product 2 · 3 = 6 of the common factors 2 and 3 that appear in both. In general,
if the prime factorization of a contains a2 copies of 2, a3 copies of 3, a5 copies of 5, a7 copies of 7, and so
on, and the factorization of b contains b2 copies of 2, b3 copies of 3, b5 copies of 5, and so on (zero copies
are allowed), then the factorization of gcd(a, b) will have min{a2, b2} copies of 2, min{a3, b3} copies of 3,
min{a5, b5} copies of 5, and so on. To obtain the GCD we just need to multiply those factors together:

Schoolbook GCD algorithm: Given integers a, b > 0,
Factor a as 2a2 · 3a3 · 5a5 · 7a7 · · ·
Factor b as 2b2 · 3b3 · 5b5 · 7b7 · · ·
Calculate ci = min{ai, bi} for all nonzero ai and bi
Output 2c2 · 3c3 · 5c5 · 7c7 · · ·

This is indeed the way we learned to calculate GCDs in school. So why bother with Euclid’s algorithm?
The reason is that although both the Schoolbook GCD and Euclid’s algorithm are correct, Euclid’s is much
much faster when the numbers involved are large. The bottleneck is the factorization of a and b: Nobody
knows a good way to factor numbers with hundreds of digits even on state-of-the-art computers. (One
reason there is much interest in quantum computers is that they are believed to possess this capability,
but noone has managed to build one yet.) In contrast, Euclid’s algorithm has no trouble at all even if a
and b has millions of digits. This inability to factor large numbers even on supercomputers turns out to be
crucial for the security of the RSA data encryption scheme which we will talk about in the next lecture.
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