
CSI 2101B/C: Discrete Structures Lecture 6
University of Ottawa, Winter 2023

A rooted tree is a tree together with a designated vertex r called the root. A perfect k-ary tree of depth
d is defined recursively as follows:

• A perfect k-ary tree of depth 0 is a single vertex.

• For d ≥ 0, a perfect k-ary tree of depth d + 1 is obtained by taking k perfect k-ary trees T1, . . . , Tk
of depth d, a new root vertex r, and adding edges from r to the roots of T1, . . . Tk.

Here are diagrams of the perfect ternary (3-ary) trees of depth 1 and 2:

How many vertices N(d) does a perfect k-ary tree of depth d have? When d ≥ 1, there is one vertex
for each of the k subtrees of depth d− 1, plus the root vertex. This gives the formula

N(d) = k ·N(d− 1) + 1

for d ≥ 1, with the “base case” N(0) = 1. Plugging in small values of d, this gives

N(1) = k ·N(0) + 1 = k + 1

N(2) = k ·N(1) + 1 = k(k + 1) + 1 = k2 + k + 1

N(3) = k ·N(2) + 1 = k(k2 + k + 1) + 1 = k3 + k2 + k + 1

and, in general,
N(d) = kd + kd−1 + · · ·+ 1 for every d ≥ 0.

You can prove the correctness of this formula by induction on d, but we won’t bother. Today we are more
interested in “understanding” the value of N(d).

1 Geometric sums

We can evaluate a sum of the form
S = xd + xd−1 + · · ·+ 1

for every real number x and positive integer d like this: If we multiply both sides by x, we obtain

xS = xd+1 + xd + · · ·+ x

If we now subtract the first expression from the second one, almost all the right hand sides terms cancel
out:

xS − S = xd+1 − 1

which simplifies to (x− 1)S = xd+1 − 1. When x 6= 1, we can do a division and obtain the formula

xd + xd−1 + · · ·+ 1 =
xd+1 − 1

x− 1
for every real number x 6= 1.

A sum of this form is called a geometric sum.
So the number of vertices in a perfect k-ary tree of depth d is (kd+1 − 1)/(k − 1). In particular, for a

perfect ternary tree, this number is (3d+1 − 1)/2. A perfect binary (2-ary) tree of depth d has 2d+1 − 1
vertices.
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Annuities You won a prize and you have two options for the prize money. Option A is that you are paid
$5000 per year for the rest of your life. Option B is that you are paid $80000 today. Which one would you
choose?

To answer this question we need to model how the value of money changes over time. If you keep your
money in the bank at no interest then option A will pay off for you in twenty years time. If, on the other
hand, you want to throw a lavish party right now then option B would make more sense for you. Now
suppose that, as a savvy investor, you are quite confident in making a reliable return of p = 7% per year.
How show this affect your choice?

To answer this question we’ll calculate how much option A is worth in today’s money. The 5K that
you will be getting in your zeroth year are worth... well, 5K. For next year’s 50K you can reason like this.
If you had invested x dollars this year, they would be worth (1 + p)x dollars next year. So today’s value
of next year’s 5K dollars is the amount x for which (1 + p)x = 5K, namely x = 5K/(1 + p). By the same
reasoning, the 5K you would be getting in two years’ time are worth 5K/(1 + p)2 today. Continuing this
reasoning, you conclude that the value of option A in today’s money is

5K +
5K

1 + p
+

5K

(1 + p)2
+ · · ·

By the geometric sum formula, the contribution from years zero up to d equals

5K · 1/(1 + p)d+1 − 1

1/(1 + p)− 1

In the large n limit, the term 1/(1 + p)d+1 vanishes and the value converges to 5K · (1 + p)/p. For p = 7%,
the value of option A is about $76, 429. So option B is better.

Here is another way to see the wisdom of option B over option A without evaluating the geometric
sum. With a budget of 80K, I can always take out x dollars for spending this year and invest the remaining
80K− x dollars aiming to grow them back to 80K by next year. To do this, I need to choose x so that

(1 + p) · (80K− x) = 80K,

which solves to

x = 80K ·
(

1− 1

1 + p

)
= 80K · p

1 + p
.

When p equals 7% we get that x is about 5234 dollars. This improves on the annual 5K in option A.

2 Polynomial sums

In Lecture 3 we proved that

1 + 2 + · · ·+ n =
n(n+ 1)

2

for every integer n ≥ 0. How did I come up with the expression on the right? Instead of going back to
something we already know, let’s work out a new one:

What is 12 + 22 + · · ·+ n2?

We have to do some guesswork. The sum 1+2+· · ·+n was a quadratic function in n, perhaps 12+22+· · ·+n2
might equal some cubic? Let’s make a guess: For all n, there exist real numbers a, b, c, d such that

12 + 22 + · · ·+ n2 = an3 + bn2 + cn+ d.
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Suppose our guess was correct. Then what are the numbers a, b, c, d? We can get an idea by evaluating
both sides for different values of n:

0 = d for n = 0

1 = a+ b+ c+ d for n = 1

5 = 8a+ 4b+ 2c+ d for n = 2

14 = 27a+ 9b+ 3c+ d for n = 3.

I solved this system of equations on the computer and obtained a = 1/3, b = 1/2, c = 1/6, d = 0. This
suggests the formula

12 + 22 + · · ·+ n2 = 1
3n

3 + 1
2n

2 + 1
6n

for all integers n ≥ 0. Let us see if we can prove its correctness by induction on n.
We already worked out the base case n = 0, so let us do the inductive step. Fix n ≥ 0 and assume that

the equality holds for n. Then

12 + 22 + · · ·+ (n+ 1)2 =
(
1
3n

3 + 1
2n

2 + 1
6n
)

+ (n+ 1)2 = 1
3n

3 + 3
2n

2 + 13
6 n+ 1.

This indeed equals 1
3(n+ 1)3 + 1

2(n+ 1)2 + 1
6(n+ 1). So we have discovered and proved a new theorem:

Theorem 1. For every integer n ≥ 0, 12 + 22 + · · ·+ n2 = 1
3n

3 + 1
2n

2 + 1
6n.

3 Approximating sums

Exact “closed-form” expressions for sums are rather exceptional. Fortunately, we can often obtain very
good approximations. One powerful method for approximating sums is the integral method from calculus:
It works by comparing the sum with a related integral.

As an example, let us look at the sum

S(n) =
√

1 +
√

2 + · · ·+
√
n.

The value S(n) can be visualized as the joint area of n bars R1, . . . , Rn where Rx has base (x− 1, x) and
height

√
x. For example, S(5) equals the area covered by the shaded bars (both light and dark shades) in

this plot:

0 1 2 3 4 5
x

√
x

The area under the bars can be lower bounded by the area (i.e., the integral) of the curve f(x) =
√
x from

x = 0 to x = n:

S(5) ≥
∫ 5

0

√
x dx.

If we remove the area L covered by the lightly shaded bars, the darker shaded area is now dominated by
the curve f(x) =

√
x and so

S(5)− L ≤
∫ 5

0

√
x dx.
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The area under L is exactly
√

5: If we stack all of the lightly shaded bars on top of one another, we obtain
a column of width 1 and height

√
5. Therefore∫ 5

0

√
x dx ≤ S(5) ≤

∫ 5

0

√
x dx+

√
5.

By the same reasoning, for every integer n ≥ 1, we have the inequalities∫ n

0

√
x dx ≤ S(n) ≤

∫ n

0

√
x dx+

√
n.

We can now use rules from calculus to evaluate the integrals: Recalling that x1/2 = d
dx

2
3x

3/2, it follows
from the fundamental theorem of calculus that

2

3
n3/2 ≤ S(n) ≤ 2

3
n3/2 +

√
n.

To get a feel for these inequalities, let us plug in a few values of n. (I calculated S(n) by evaluating the
sum on the computer.)

n 2
3n

3/2 S(n) 2
3n

3/2 +
√
n

10 21.082 22.468 24.244
100 666.67 671.46 676.67

1, 000 21, 081.9 21, 097.5 21, 113.5
10, 000 666, 666 666, 716 666, 766

As n becomes large, the accuracy of these approximations looks quite good.

4 Overhang

You have n identical rectangular blocks and you stack them on top of one another at the edge of a table
like this:

table

Is this configuration stable, or will it topple over?
In general, a configuration of n blocks is stable if for every i between 1 and n, the center of mass of the

top i blocks sits over the (i + 1)st block, where we think of the table as the (n + 1)st block in the stack.
For example, the top stack is not stable because the center of mass of the top two blocks does not sit over
the third block:

We want to stack our n blocks so that the rightmost block hangs as far over the edge of the table as
possible. What should we do? One reasonable strategy is to try to push the top blocks as far as possible
away from the table as long as they do not topple over.

We will assume each block has length 2 units and we will use xi to denote the offset of the center of
the i-th block (counting from the top) from the edge of the table:
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i-th block

xi

The offset of a block can be positive, zero, or negative, depending on the position of its center of mass.
For the top block not to topple over, its center of mass must sit over the second block. To move it as

far away from the edge of the table as possible, we should move its center exactly one unit to the right of
the center of the second block:

x2

x1

This forces the offsets x1 and x2 to satisfy the equation

x1 = x2 + 1. (1)

How about the third block? The center of mass of the first two blocks is at offset (x1 + x2)/2 from the
edge of the table. To push this as far to the right as possible without toppling over the third block

(x1 + x2)/2

x3

we must set
x1 + x2

2
= x3 + 1. (2)

Continuing our reasoning in this way, for every i between 1 and n, the offset of the center of mass of the
top i blocks is (x1 + · · ·+ xi)/i. To push this as far to the right without toppling over the (i+ 1)st block,
we must set

x1 + x2 + · · ·+ xi
i

= xi+1 + 1 for all 1 ≤ i ≤ n. (3)

Finally, when i = n+ 1, we have reached the table whose offset is zero. Since we are thinking of the table
as the (n+ 1)st block, its centre of mass is one unit left to its edge:

xn+1 = −1. (4)

The overhang of the set of blocks is x1 + 1. To figure out what this number is, we need to solve for x1 in
the system of equations (3-4). Let us develop some intuition first. Equation (1) tells us that x2 = x1 − 1.
Plugging in this formula for x2 into (2), we get that

x3 = x1 −
1

2
− 1.

Let’s do one more step. Equation (3) tells us that (x1 + x2 + x3)/3 = x4 + 1. Plugging in our formulas for
x2 and x3 in terms of x1 we get that

x1 + (x1 − 1) + (x1 − 3
2)

3
= x4 + 1

from where

x4 = x1 −
1 + 3

2

3
− 1 = x1 −

1

3
− 1

2
− 1.

At this point it is reasonable to guess that xi+1 should equal x1 minus the sum

1 +
1

2
+

1

3
+ · · ·+ 1

i
.

Let us prove that this guess is correct.
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Lemma 2. For all i between 1 and n, xi − xi+1 = 1/i.

Proof. If we multiply both sides of the i-th equation (3) by i we obtain

x1 + x2 + · · ·+ xi−1 + xi = i · (xi+1 + 1).

Under this scaling the (i− 1)st equation is

x1 + x2 + · · ·+ xi−1 = (i− 1) · (xi + 1).

Subtracting the two we obtain that

xi = i(xi+1 − 1)− (i− 1)(xi − 1) = ixi+1 − (i− 1)xi + 1

from where, after moving the variables around, we conclude that

xi = xi+1 +
1

i
.

It follows immediately from this Lemma that

x1 − xn+1 = (x1 − x2) + (x2 − x3) + · · ·+ (xn+1 − xn) = 1 +
1

2
+ · · ·+ 1

n
.

Since xn+1 = −1, the overhang x1 + 1 equals exactly this number, which is called the n-th harmonic
number and is denoted by H(n). There is no closed-form expression for H(n), but we can obtain an
excellent approximation using the integral method. To do this, we compare H(n) with the integral of the
function 1/x:

1 2 3 4 5 6
x

1/x

By similar reasoning as before, the sum H(n) = 1 + 1/2 + . . . 1/n is given by the area of the first n shaded
bars. This area is larger than the integral of 1/x from 1 to n+ 1:

H(n) ≥
∫ n+1

1

1

x
dx.

On the other hand, if we subtract from H(n) the area of the lightly shaded bars, then the integral becomes
larger. This area equals 1− 1/(n+ 1):

H(n)− 1 +
1

n+ 1
≤
∫ n+1

1

1

x
dx.

Combining this two inequalities gives the approximation∫ n+1

1

1

x
dx ≤ H(n) ≤

∫ n+1

1

1

x
dx+ 1− 1

n+ 1
.

The antiderivative of 1/x is lnx. By the fundamental theorem of calculus it follows that

ln(n+ 1) ≤ H(n) ≤ ln(n+ 1) + 1− 1

n+ 1
. (5)

The left hand side of this inequality tells us that our method of stacking blocks achieves overhang at least
ln(n + 1). The logarithm function is unbounded; given enough blocks, we can grow our stack all the way
to New York!
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5 Order of growth

In engineering we are often interested in the asymptotic behaviour of measures as our problem size becomes
large. For example, if you write a program for routing data packets through a network, we might not really
care what happens for 2 or 3 packets, but would want to have a good understanding about how fast the
program is when we have hundreds or thousands of packets. For this purpose, it is useful to have a quick
way of estimating how a function f(n) behaves as n grows large. Usually, we do this by comparing the
value of the function f for large n to values of “well-known” functions like n, n2, log n, 2n, or en.

The big-oh notation is a handy way to say that a given function does not grow too fast.

Definition 3. For two real-valued functions f and g (defined over the positive reals, or over the positive
integers), we say f is O(g) (big-oh of g) if there exists a constant C > 0 such that for every sufficiently
large input x, f(x) ≤ C · g(x).

For example, 13x4 + 2x2 + 10x+ 1000 is O(x4) because when x is large (specifically, at least 1):

13x4 + 2x2 + 10x+ 1000 ≤ 13x4 + 2x4 + 10x4 + 1000x4 = 1025x4.

By the same reasoning, every polynomial is the big-oh of its highest-degree monomial.
Similarly, log(16x5 + 3x+ 11) is O(log x) because when x is large,

log(16x5 + 3x+ 11) ≤ log(16x5 + 3x5 + 11x5) ≤ log(30x5) ≤ log(x6) ≤ 6 log x.

By the same reasoning, the logarithm of any polynomial of x is O(log x).
The little-oh notation says that asymptotically, one function grows at a significantly slower rate than

another one.

Definition 4. For two real-valued functions f and g, we say f is o(g) (little-oh of g) if for every constant
c > 0 and every sufficiently large input x, f(x) ≤ c · g(x).

If f is o(g), then f is also O(g), but not necessarily the other way. For example, 1
2x

5−x3 is O(x5), but
it is not o(x5) because as x gets large, (12x

5 − x3)/x5 converges to 1
2 ; when x is sufficiently large, 1

2x
5 − x3

will be greater than, say, 1
4x

5.

For example, x3/2 + 3x1/2 is o(x2) because

x3/2 + 3x1/2 ≤ 4x3/2 ≤ 4

x1/2
· x2

and for every constant c > 0, as x becomes large enough, 4/x1/2 is smaller than c, so x3/2 is at most cx2.
By similar reasoning, every polynomial p(x) of degree d (even one with fractional degrees) is o(xe) for every
constant e > d.

Another way to determine order of growth for sufficiently large functions is by taking limits. Assuming
that the ratio f(x)/g(x) converges in the limit x→∞, we have the relations

f is O(g) if limx→∞ f(x)/g(x) <∞,
f is o(g) if limx→∞ f(x)/g(x) = 0.

So 17x4 + 5x3 is O(x4) because (17x4 + 5x3)/x4 tends to 17 in the limit x → ∞, while x3/2 = o(x2)
because x3/2/x2 = 1/

√
x tends to zero in the limit x→∞.

When 0 < B < C, it is also true that Bx is o(Cx) because we can write Bx/Cx = (B/C)x tends to
zero in the limit.

Theorem 5. For all constants a, b > 0, (log x)a is o(xb).
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In the statement of this theorem, the base of the logarithm is irrelevant because changing the base
from one constant to another only changes the value of the expression (log x)a by a constant factor. In the
proof we will assume that the logarithm is a natural logarithm.

Proof. When a = 1, we can calculate limx→∞(lnx)/xb using L’Hôpital’s rule from calculus. Both numerator
and denominator grow to infinity, but this is not true for their derivatives: d

dx lnx = 1/x, while d
dxx

b =
bxb−1. The ratio of these two numbers is 1/(bxb), which tends to zero as x grows. Therefore

limx→∞
lnx

xb
= limx→∞

1

bxb
= 0

and so log x ≤ cxb for every constant c > 0 and sufficiently large x.
Now let a > 0 be arbitrary and c > 0 be an arbitrary constant. By what we just proved,

lnx ≤ c1/axb/a

for x sufficiently large, from where
(lnx)a ≤ (c1/axb/a)a ≤ cxb

for x sufficiently large.

If we set x = ey and B = eb, we get the following corollary:

Corollary 6. For all constants a > 0 and B > 1, ya is o(By).

These relations are transitive: For example, if f is o(g) and g is o(h) then f is o(h). In fact, if f is o(g)
and g is O(h) then f is still o(h). We can therefore use this notation to order sets of functions.

Exercise Suppose we want to order the functions 2x, 2x
2
, x2, xx in terms of their asymptotic growth.

By Corollary 6 we know that x2 is both o(2x) and o(2x
2
).

How do 2x and 2x
2

compare to each other? As x is o(x2) we would expect that 2x should also be o(2x
2
).

In fact the ratio 2x/2x
2

equals 2x−x
2

and this goes to zero as the exponent x − x2 tends to −∞. So we
have established that

x2 is o(2x) and 2x is o(2x
2
).

Where does xx fit in? To answer this it is usually a sensible strategy to identify whether xx is a polynomial
or an exponential-type function. In this example xx grows faster than x, x2, x100 and any polynomial
in x, so x2 is certainly o(xx). To compare xx against 2x and 2x

2
it is sensible to rewrite it as a base-2

exponential, namely xx = 2x log x. Now we see that x is o(x log x) and x log x is o(x2) so xx should fit
between 2x and 2x

2
:

x2 is o(2x), 2x is o(xx), and xx is o(2x
2
).

Big-theta Big-Theta says that two functions have the same order of growth:

Definition 7. We say f is Θ(g) if f is O(g) and g is O(f).

For example, x5 + 7x3 is Θ(x5) and (log x1/2)2 − log(x4 + x2) is Θ((log x)2). For sufficiently nice
functions,

f is Θ(g) if 0 < limx→∞ f(x)/g(x) <∞.
It is customary to abuse the equality sign when talking about order of growth. In books you often see

“f = O(g)” instead of “f is O(g)”. Technically, this is incorrect because f and O(g) are objects of different
types: f is a single function while O(g) is not. It is okay to use this notation as long as you are aware of
what it means. What you should not do is write “equations” like

1 + 2 + · · ·+ n = O(1) +O(1) + · · ·+O(n) = (n− 1) ·O(1) +O(n) = O(n)

because it is not clear what they mean and may lead to incorrect conclusions.
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6 Order of growth of summations

The order of growth of a summation can be determined by first approximating the sum. For example,
from (5) we have that

1 ≤ H(n)

ln(n+ 1)
≤ 1 +

1− 1/(n+ 1)

ln(n+ 1)

so in the limit n → ∞, H(n)/ ln(n + 1) tends to one. Therefore H(n) is Θ(ln(n + 1)), which is the same
as Θ(log n).

Let’s now try to determine the order of growth of

n! = 1 · 2 · · ·n.

The expression for the factorial is a product, not a sum. We can turn products into sums by taking
logarithms:

ln(n!) = ln 1 + ln 2 + · · ·+ lnn.

This sum is perfect for the integral method.

1 2 3 4 5
x

lnx

The sum ln(n!) = ln 1 + ln 2 + · · · + lnn is the area of the first n dark bars (the very first one has height
zero) so it is upper bounded by the integral of lnx from 1 to n:

ln(n!) ≤
∫ n

1
lnx dx.

To obtain an upper bound, we add the total area of the first n light bars, which is exactly lnn:

ln(n!)− lnn ≤
∫ n

1
lnx dx.

The antiderivative of lnx is x lnx− x, so we get that

n lnn− n ≤ n! ≤ n lnn− n+ lnn. (6)

Both sides of this equation are Θ(n lnn) so we have proved that

Theorem 8. ln(n!) is Θ(n lnn).

We cannot conclude from here that n! is Θ(en lnn) = Θ(nn): If f is O(g) it does not mean that ef is
O(eg). What we can do is exponentiate both sides of (6) to obtain

en lnn−n ≤ n! ≤ en lnn−n+lnn

which we can simplify to (n
e

)n
≤ n! ≤ n ·

(n
e

)n
.

The left and right hand side do not match asymptotically. The “naive” integral method cannot determine
the order of growth of n!. Using an enhancement that you can read about in Section 7 it is possible to
prove that the truth is in the middle:

Theorem 9. n! is Θ(
√
n · (n/e)n).
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7 Stirling’s formula*

The estimate we obtained for S(n) = 1 +
√

2 + · · · +
√
n has the undesirable property that the errors

S(n) − 2
3n

3/2 and 2
3n

3/2 +
√
n − S(n) appear to grow to infinity as n becomes larger. You may notice,

however, that the average of the upper and lower approximation looks much better:

n S(n) 2
3n

3/2 + 1
2

√
n

10 22.468 24.663
100 671.463 676.666

1, 000 21, 097.456 21, 096.662
10, 000 666, 716.459 666, 716.666

The estimate 2
3n

3/2 + 1
2

√
n can be obtained more methodically as an application of the trapezoidal rule,

which estimates the shaded area in this picture by the integral under the curve in the following plot:

0 1 2 3 4 5
x

√
x

Indeed, the shaded area can be calculated by adding the areas under the first n trapezoids to obtain

A =
1

2
(
√

0 +
√

1) +
1

2
(
√

1 +
√

2) + · · ·+ 1

2
(
√
n− 1 +

√
n) = S(n)− 1

2

√
n.

This area is upper bounded by the area under the curve f(x) =
√
x between x = 0 and x = n, so

A ≤
∫ n

0

√
xdx =

2

3
n3/2

from where

S(n) ≤ 2

3
n3/2 +

1

2

√
n.

It appears that the approximation error 2
3n

3/2 + 1
2

√
n − S(n) is a small fraction, something like 1/4,

regardless of the value of n. Is this really the case?
To bound the error we need to understand the contribution by a single trapezoid. For convenience we

will shift and scale the trapezoid to have x-coordinates −1 and 1. The following clever lemma bounds the
error by the second derivative f ′′ of f .

Lemma 10. For every function f from the real interval [−1, 1] to the real numbers so that −B ≤ f ′′(t) ≤ 0
for all −1 ≤ t ≤ 1,

f(−1) + f(1) ≤
∫ 1

−1
f(t)dt ≤ f(−1) + f(1) +

2B

3
. (7)

Proof. Since f ′′(x) ≤ 0, the area under the curve f(x) for x ∈ [−1, 1] is at most the area of the shaded
trapezoid in the graph below, which is exactly f(−1) + f(1).
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−1 1
t

f(t)

q(t)

Let q(t) = −Bt2/2 +Ct+D be the (unique) quadratic function such that q(−1) = f(−1), q(1) = f(1),
and q′′(t) = −B. We will argue shortly that f(t) must be upper bounded by q(t) for all t ∈ [−1, 1] as in
the graph. Assuming this is the case, we can upper bound the area under f by the area under q to get∫ 1

−1
f(t)dt ≤

∫ 1

−1
q(t)dt =

(
−Bt

3

6
+
Ct2

2
+Dt

)∣∣∣∣1
−1

= −B
3

+ 2D = −B + 2D +
2B

3
.

The value −B + 2D is exactly q(1) + q(−1), which in turn equals f(1) + f(−1), giving the desired upper
bound.

It remains to argue that q(t) indeed upper bounds f(t) for t ∈ [−1, 1]. Suppose for contradiction that
q(x) < f(x) for some x between −1 and 1. We consider two cases. If q′(x) ≤ f ′(x), then q′(t) can be at
most f ′(t) for all t ∈ [x, 1] because q′′(t) ≤ f ′′(t), so q′ drops at a faster rate than f ′. Therefore q must
drop at a faster rate than f , so if q(x) < f(x) then q(1) must be less than f(1), a contradiction. If, on the
other hand, q′(x) > f ′(x) then the same reasoning applied to the functions q(−t) and f(−t) also leads to
a contradiction.

Applying the change of variables x = i+ (t+ 1)/2 in (7) gives that for every i,

f(i) + f(i+ 1)

2
≤
∫ i+1

i
f(x)dx ≤ f(i) + f(i+ 1)

2
+
Bi

3
(8)

assuming that 0 ≤ f ′′(x) ≤ Bi for every x between i and i+ 1.
If f is the function f(x) =

√
x, its second derivative is f ′′(x) = −1

4x
−3/2, so it takes value between

−1
4 i
−3/2 and zero in the interval [i, i+ 1]. Applying (8) gives that

1

2
(
√
i+
√
i+ 1) ≤

∫ i+1

i

√
xdx ≤ 1

2
(
√
i+
√
i+ 1) +

1

12i3/2
.

The right hand side is meaningless when i = 0, so we start at i = 1 instead. Adding up these inequalities
for i taking integer values from 1 up to n− 1 gives

S(n)− 1

2
(
√

1 +
√
n) ≤

∫ n

1

√
xdx ≤ S(n)− 1

2
(
√

1 +
√
n) + E(n)

where

E(n) =
1

12
+

1

12 · 23/2
+ · · ·+ 1

12 · (n− 1)3/2
.

Calculating the integral and simplifying gives that

2

3
n3/2 +

1

2

√
n− 1

6
− E(n) ≤ S(n) ≤ 2

3
n3/2 +

1

2

√
n− 1

6
.
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This estimate appears even better than the previous one as subtracting 1/6 ≈ 0.166 seems to bring the
estimate even closer to the true value of the sum S(n).

It remains to analyze the error term E(n). This can be done by another integral bound:

E(n) ≤
∫ n+1

1

1

12x3/2
dx =

1

12
+ (−1

6x
−1/2)

∣∣n+1

1
≤ 1

12
+

1

6
=

1

4

so the estimate is always within 1/4 of the true value.
In fact, we can make the approximation error arbitrarily small by starting the summation at a later

point. For instance, the same method tells us that

2

3
n3/2 +

1

2

√
n− 16.5 ≤

√
9 +
√

10 + · · ·+
√
n ≤ 2

3
n3/2 +

1

2

√
n− 16.5 + E(9, n)

where

E(9, n) =
1

12 · 93/2
+

1

12 · 103/2
+ · · ·+ 1

12 · n3/2
≤
∫ ∞
8

1

12x3/2
dx =

1

12 · 82/3
≤ 0.0834.

Therefore the value

2

3
n3/2 +

1

2

√
n− 16.5 + (

√
1 + · · ·+

√
8) =

2

3
n3/2 +

1

2

√
n+ 0.194± 0.0001

is guaranteed to never exceed S(n) by more than 0.0209. For example, it gives the estimate ≈ 666716.473
for S(10000).

Stirling’s formula Let’s use the trapezoidal rule to estimate the sum

F (n) = ln 1 + ln 2 + · · ·+ lnn.

Since the second derivative of lnx is −1/x2, its value is between −1/i2 and zero on every interval [i, i+ 1],
where i ≥ 1. Inequality (8) gives that for every i ≥ 1∫ i+1

i
lnx dx =

ln i+ ln(i+ 1)

2
+ εi where 0 ≤ εi ≤

1

12i2
.

Therefore ∫ n

1
lnx dx = F (n)− 1

2
lnn+ E(n)

where

E(n) = ε1 + · · ·+ εn ≤
1

12 · 12
+

1

12 · 22
+ · · ·+ 1

12 · n2
.

The antiderivative of lnx is x lnx− x+ 1, so

F (n) = n lnn− n+
1

2
lnn+ 1− E(n).

Exponentiating both sides and rearranging terms gives

eF (n) = en lnn · e−n · e(lnn)/2 · e1−E(n) = e1−E(n) ·
√
n ·
(n
e

)n
.

On the other hand, eF (n) = eln 1+···+lnn = n!. Using the integral method to upper bound E(n) by 2/3 we
can conclude that

e1/3 ·
√
n ·
(n
e

)n
≤ n! ≤ e ·

√
n ·
(n
e

)n
.

so that n! = Θ(
√
n · (n/e)n), which proves Theorem 9.
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This is not the last word. Since E(n) is a sum of positive numbers ε1, ε2, . . . which is at most 2/3, it
must converge to some constant c as n approaches infinity. Therefore it must be that the expression

n!
/√

n ·
(n
e

)n
approaches the constant C = e1−c as n approaches infinity. Using the law of large numbers for the binomial
distribution from probability theory and a bit more calculus, one can show that C =

√
2π and obtain this

beautiful formula:

Theorem 11 (Stirling’s formula). limn→∞ n! /
√

2πn · (n/e)n = 1.

References

This lecture is based on Chapter 13 of the text Mathematics for Computer Science by E. Lehman, T.
Leighton, and A. Meyer. The variant of the integral methods described in the textbook is slightly different
from the one in these notes.

Surprisingly, if we allow for the blocks to be stacked not only on top of one another but also side by
side, the overhang can be much improved. If you are interested, see the amazing work Overhang by Mike
Paterson and Uri Zwick.
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