
CSI 2101B/C: Discrete Structures Lecture 7
University of Ottawa, Winter 2023

Recurrences are formulas that describe the value of a function of positive integers at an input in terms
of the value of the same function at smaller inputs. We will see examples of problems in which recurrences
come about and show how to solve them.

1 Towers of Hanoi

You have three posts and a stack of n disks of different sizes, stacked up from largest to smallest, on the
first post.

The objective is to move the stack on to the third post, one disk at a time, so that a larger disk is
never placed on top of a smaller one. Here is a way to do it for three disks:

What about four disks? You can try doing some experiments, but you might find the process quite
involved. Instead, let us think inductively and use our solution for 3 disks as a “subroutine”:

More generally, suppose we have solved the Towers of Hanoi problem for n disks. Here is how to solve
it for n+ 1 disks: Ignore the largest disk and apply the solution for n disks to move the remaining tower
to the middle pole. Then move the largest disk to the rightmost pole. Ignore the largest disk again and
the apply the solution for n disks to move the remaining tower to the rightmost pole.

Let T (n) be the number of moves we performed to move n disks. Then T (n) satisfies the equation

T (n+ 1) = 2T (n) + 1. (1)

Here, each of the two T (n)s accounts for the steps taken in each of the inductive moves applied to the
tower of n smaller blocks, and the extra one is for the move of the largest block from the left pole to the
right pole.

This type of equation is a recurrence. If we know T (1), it allows us to calculate T (2), T (3), and so on.
In our case, T (1) = 1 since a one block tower can be rearranged in one move.

2 Solving recurrences

One objective is to understand how a recurrence like (1) behaves for large values of n. The best thing to
do is to get a closed-form formula for T (n), if we can.

To do this I recommend you work backwards. From equation (1) we get

T (n) = 2T (n− 1) + 1

= 2(2T (n− 2) + 1) + 1 = 22T (n− 2) + (2 + 1)

= 22(2T (n− 3) + 1) + (2 + 1) = 23T (n− 3) + (22 + 2 + 1).

1

You start to spot a pattern: If we continue this process for enough steps until we get a T (1) on the right
hand side – this is n− 1 steps – we get

T (n) = 2n−1T (1) + (2n−2 + · · ·+ 2 + 1).

Since T (1) = 1, it seems that

T (n) = 2n−1 + 2n−2 + · · ·+ 2 + 1 = 2n − 1

using the formula for geometric series from last lecture.
We can indeed verify that this guess is correct:

Theorem 1. The assignment T (n) = 2n − 1 satisfies equation (1) for all n ≥ 1.

Proof. Assume T (n) = 2n − 1 and n ≥ 1. Then

2T (n) + 1 = 2 · (2n − 1) + 1 = 2n+1 − 2 + 1 = 2n+1 − 1 = T (n+ 1).

Let’s do another example. In lecture 9 we will talk about a sequence of graphs B1, B2, . . . called the
Beneš networks that are defined recursively. Graph B1 has 4 edges. Graph Bn is constructed from two
copies of Bn−1 plus an additional 2 · 2n edges. The number of edges E(n) of Bn is given by the recurrence

E(n) = 2E(n− 1) + 2n+2

E(1) = 4.
(2)

Let us try to solve this recurrence by working backwards:

E(n) = 2E(n− 1) + 2n+2

= 2(2E(n− 2) + 2n+1) + 2n+2 = 22E(n− 2) + 2 · 2n+2

= 22(2E(n− 3) + 2n) + 2 · 2n+2 = 23E(n− 3) + 3 · 2n+2

Continuing this reasoning for n− 1 steps we obtain the guess

E(n) = 2n−1E(1) + (n− 1) · 2n+2 = 2n−1 · 4 + (n− 1) · 2n+2 = n · 2n+2 − 2n+1.

We can now verify that our guess is correct:

Theorem 2. For all n ≥ 1, E(n) = n · 2n+2 − 2n+1.

Proof. We prove the theorem by induction on n. For the base case, 1 · 23 − 22 = E(1) = 4 as desired. Now
assume E(n) = n · 2n+2 − 2n+1. Then

E(n+ 1) = 2 · (n · 2n+2 − 2n+1) + 2n+3 = n2n+3 + 2n+2 = (n+ 1)2n+3 − 2n+2

as desired.

3 Merge sort

Merge sort is the following procedure for sorting a sequence of n numbers in nondecreasing order:

Input: A sequence of n numbers.
Merge Sort Procedure:

If n = 1, do nothing. Otherwise,
Recursively sort the left half of the sequence.
Recursively sort the right half of the sequence.
Merge the two sorted sequences in increasing order.

2

For example, if the input sequence is

10 7 15 3 6 8 1 9

the sequence is split in the first half 10 7 15 3 and the second half 6 8 1 9. Each half is sorted recursively
to obtain

3 7 10 15 and 1 6 8 9

Then the two sequences are merged. To merge the first and second half, we compare the leftmost numbers
in both sequences, take out the smaller of the two and write it as the next term in the output sequence
until both halves become empty.

first half second half output

3 7 10 15 1 6 8 9
3 7 10 15 6 8 9 1
7 10 15 6 8 9 1 3
7 10 15 8 9 1 3 6
10 15 8 9 1 3 6 7
10 15 9 1 3 6 7 8
10 15 1 3 6 7 8 9
15 1 3 6 7 8 9 10

1 3 6 7 8 9 10 15

For example, in the first line, the leftmost numbers in the first and the second half are 1 and 3, respectively.
They are compared to each other, and since 1 is smaller, it is taken out and written in the output.

In this example, exactly seven pairwise comparisons were made in the merging phase. In general, if the
length of the sequence is n, the number of comparisons when merging the two halves is n− 1.

We want to count the total number C(n) of comparisons that Merge Sort performs when sorting a
sequence of n numbers. We will assume that n is a power of two so that any time the sequence is split in
half in a recursive call the two halves are equal.

To sort n numbers (for n > 1), Merge Sort makes two recursive calls to sequences of length n/2 and
performs exactly n− 1 comparisons in the merging phase. This gives the recurrence

C(n) = 2C(n/2) + (n− 1) for n > 1 (3)

with the base case C(1) = 0.
Let’s try to guess a solution for this recurrence by working backwards as usual:

C(n) = 2C(n/2) + (n− 1)

= 2(2C(n/22) + (n/2− 1)) + (n− 1) = 22C(n/22) + 2n− (2 + 1)

= 22(2C(n/23) + n/22 − 1) + 2n− (2 + 1) = 23C(n/23) + 3n− (22 + 2 + 1).

We reach C(1) on the right hand side after log n steps.1 The expression we get on the right is

nC(1) + (log n)n− (2logn−1 + · · ·+ 2 + 1).

By our base case, C(1) = 0. By the formula for geometric sums, the last term equals 2logn − 1 = n − 1.
This suggests the guess

C(n) = n log n− n+ 1.

This formula indeed sets C(1) to zero as desired. You can now verify on your own that this guess solves
the recursion by a calculation.

Theorem 3. The assignment C(n) = n log n− n+ 1 satisfies the equations (3).
1In computer science, we use log for base two logarithms.

3

4 Homogeneous linear recurrences

You are given an unlimited supply of 1 × 1 and 2 × 1 tiles. In how many ways can you tile a hallway of
dimension n× 1 using the tiles? For example, here are all five possible tilings for n = 4:

Let f(n) denote the number of desired tilings of an n× 1 hallway. If n = 0 there is exactly one possible
tiling — use no tiles — so f(0) = 1. If n = 1 there is also one tiling — use a single 1×1 tile — so f(1) = 1.

When n ≥ 2, we distinguish two possible types of tilings. If the tiling starts with a 1× 1 tile, then the
remaining part of the corridor can be tiled in f(n−1) ways. If the tiling starts with a 2×1 tile, then there
are f(n−2) possible tilings. Since these two possibilities cover each possibility exactly once, we obtain the
recurrence

f(n) = f(n− 1) + f(n− 2) for every n ≥ 2. (4)

The numbers f(0), f(1), f(2), . . . are no other than the Fibonacci numbers. The formula (4) is a
homogeneous linear recurrence. Such recurrences can be solved using the following guess-and-verify method.

At first, we forget about the “base cases” f(0) = 0, f(1) = 1 and focus on the equations (4). We look
for solutions of the type f(n) = xn for some nonzero real number x. The reason we expect such solutions
to work out is because for every n ≥ 2, the equation xn = xn−1 + xn−2 is the same as

x2 = x+ 1

since all we did was scale down both sides by a factor of xn−2. This is a quadratic equation in x and we
can use the quadratic formula to calculate its solutions

x1 =
1 +

√
5

2
and x2 =

1−
√
5

2
.

It is easy to check that both f(n) = xn1 and f(n) = xn2 satisfy all the equations (4). But what about the
requirements f(0) = 1 and f(1) = 1? Neither solution satisfies these additional conditions.

Every linear combination f(n) = sxn1 + txn2 also solves the equations (4), so if we can find numbers s
and t such that

1 = f(0) = sx01 + tx02 = s+ t

and

1 = f(1) = sx11 + tx12 = s · 1 +
√
5

2
+ t · 1−

√
5

2
then the assignment f(n) = sxn1 + txn2 must be the solution to our problem.

To find s and t, we need to solve two equations with two unknowns. These equations are simple enough
that we can solve them by hand; no need for the computer. After subtracting the first equation scaled by
1/2 from the second one we get

1

2
=

√
5

2
(s− t)

or s− t = 1/
√
5. Adding this to s+ t = 1 we get 2s = 1 + 1/

√
5, from where

s =
1

2
+

1

2
√
5
=

1√
5
· 1 +

√
5

2

and

t = 1− s = − 1√
5
· 1−

√
5

2

from where

f(n) = sxn1 + txn2 =
1√
5
·
(1 +√

5

2

)n+1
− 1√

5
·
(1−√

5

2

)n+1
. (5)

You can now verify in the usual way that this solution is indeed correct.

4

Theorem 4. The assignment (5) satisfies the equations (4) with initial conditions f(0) = 1, f(1) = 1.

The formula (5) tells us how these numbers behave when n is large. Since (1 +
√
5)/2 ≈ 1.618 and

(1−
√
5)/2 ≈ −0.618, the term ((1+

√
5)/2)n will grow when n becomes large and the term ((1−

√
5)/2)n

will become vanishingly small; eventually, it becomes smaller than any fixed constant. Therefore we can
write

f(n) =
1√
5
·
(1 +√

5

2

)n+1
+ o(1).

For an even rougher estimate, we can disregard all the constants in the first term to get

f(n) = Θ

((1 +√
5

2

)n
)
.

In general, this method can be used to solve any homogeneous linear recurrence, that is a recurrence
of the type

f(n) = a1f(n− 1) + a2f(n− 2) + · · ·+ akf(n− k)

as long as k “base cases” are provided. If you can’t figure out the procedure, please see Section 22.3.2 of
the textbook.

Homogenization

The recurrence that counts the number of moves for the Towers of Hanoi

T (n) = 2T (n− 1) + 1

is not homogeneous because of the extra +1 term on the right hand side. It can be turned into a homoge-
neous recurrence like this: If I add another +1 to both sides I can rewrite this equation as

T (n) + 1 = 2(T (n− 1) + 1)

Now we can introduce the “change of variables” T ′(n) = T (n) + 1 and get the homogeneous recurrence

T ′(n) = 2T ′(n− 1)

which is then easy to solve: T ′(n) = 2nT ′(0) = 2n, so T (n) = T ′(n)− 1 = 2n − 1.
Let’s try another nonhomogeneous recurrence:

f(n) = f(n− 1) + f(n− 2) + n (6)

with initial conditions f(0) = −2, f(1) = −3. We may try to homogenize it by adding some factors of n to
both sides. How to we find these factors? We can attempt a general guess of the form f(n) = g(n) + a · n
for some (for now unknown) constant a. The recurrence then becomes

g(n) + a · n =
(
g(n− 1) + a · (n− 1)

)
+
(
g(n− 2) + a · (n− 2)

)
+ n.

In order to homogenize the recurrence, it better be the case that all terms involving a vanish, namely

a · n = a · (n− 1) + a · (n− 2) + n for all n.

We can try to solve the equation for a by grouping terms:

(a+ 1) · n− 3a = 0.

5

As this equation should hold for all n, it better be the case that a + 1 = 0 and 3a = 0. This is clearly
impossible. This attempt to homogenize (6) was not successful. We can try again with a more general
guess of the form

f(n) = g(n) + a · n+ b.

Plugging into (6) we get

g(n) + a · n+ b =
(
g(n− 1) + a · (n− 1) + b

)
+
(
g(n− 2) + a · (n− 2) + b

)
+ n.

To homogenize the recurrence we would need

a · n+ b = a · (n− 1) + b+ a · (n− 2) + b+ n for all n

or
(a+ 1) · n− 3a+ b = 0.

There is now a solution, namely a = −1 and b = −3. Therefore, if we set f(n) = g(n) − n − 3 then g
satisfies the recurrence g(n) = g(n− 1) + g(n− 2). Plugging in n = 0 and n = 1 the initial conditions for
g are g(0) = 1 and g(1) = 1. This is exactly the Fibonacci sequence, so

g(n) =
1√
5
·
(1 +√

5

2

)n+1
− 1√

5
·
(1−√

5

2

)n+1

and therefore

f(n) = g(n)− n− 3 =
1√
5
·
(1 +√

5

2

)n+1
− 1√

5
·
(1−√

5

2

)n+1
− n− 3.

Analysis of Euclid’s algorithm

In Lecture 4 we said that one advantage of Euclid’s algorithm over the “schoolbook gcd” is that the former
is a lot faster when the inputs are big. But how fast is Euclid’s algorithm?

When we measure the speed of algorithms we have to first agree on what counts for a single step. In
the case of Euclid’s algorithm it is sensible to count the number of transitions (a, b) → (b, a mod b) of
the underlying state machine (assuming a ≥ b), namely the number of divisions with remainder that the
algorithm performs.

This number will clearly depend on the inputs n and d whose gcd is being computed. We expect that
as the inputs become larger, the number of steps should grow. This intuition is not completely accurate.
For example, when the inputs are 27 and 13,

E(27, 13) = E(13, 1) = E(1, 0) = 1

and Euclid’s algorithm terminates in two steps. When the inputs are 21 and 13, however, the transitions
are

E(21, 13) = E(13, 8) = E(8, 5) = E(5, 3) = E(3, 2) = E(2, 1) = E(1, 0) = 1 (7)

and the algorithm takes six steps to terminate.
These examples suggests that it may be tricky to derive an exact formula for the complexity of Euclid’s

algorithm. Fortunately it turns out that it is not too difficult to obtain a good upper bound on the number
of steps. Let (at+1, at) denote the state of Euclid’s algorithm with t steps remaining to termination. For
example, in execution (7) the initial state is (a7 = 22, a6 = 13) and the sequence a7, a6, . . . , a0 is a7 = 22,
a6 = 13, a5 = 8, a4 = 5, a3 = 3, a2 = 2, a1 = 1, and a0 = 0. As at−1 is always the remainder of dividing
at+1 by at, it must be that

at−1 ≤ at+1 − at for t = 1 up to n− 1.

6

Reversing this inequality it follows that

at+1 ≥ at + at−1 for t = 1 up to n− 1.

This looks a lot like the definition of the Fibonacci sequence, except that the equality is replaced with an
inequality. Although the numbers a1, a2 and so on are not determined by these inequality, we can say that
they grow at least as fast as the Fibonacci numbers.

Lemma 5. at ≥ f(t− 1) for all t from 0 up to n (where we set f(−1) = 0).

Proof. We apply strong induction on t. The final state of Euclid’s algorithm is (a1, a0) with a1 > 0 and
a0 = 0. Therefore a0 ≥ f(−1) and a1 ≥ f(0) proving the base cases. For the inductive step we assume
that a0 ≥ f(−1), a1 ≥ f(0), a2 ≥ f(2), up to at ≥ f(t). Then at+1 ≥ at+ at−1 ≥ f(t)+ f(t− 1) = f(t+1)
as desired.

Now suppose Euclid’s algorithm runs for n steps. By this Lemma the smaller of the two inputs a = an
must be at least as large as the n-th Fibonacci number, so

an ≥ f(n) =
1√
5

(1 +√
5

2

)n
− 1√

5
·
(1−√

5

2

)n
.

therefore the number of steps n can be at most

n ≤ logϕ

(√
5 · an +

(1−√
5

2

)n
)

≤ logϕ(
√
5 · an + 1),

where ϕ = (1 +
√
5)/2 ≈ 1.618. For example, if the larger input an is 2300 then logϕ(

√
5an + 1) ≤ 434.

Even with such a huge input Euclid’s algorithm will terminate quite fast.
If we do not care much about exact constants, we can write

logϕ(
√
5 · an + 1) = logϕ(O(an)) = logϕ(an) +O(1).

Up to some additive constant, the complexity of Euclid’s algorithm is at most logϕ(smaller of the two inputs).

5 Divide-and-conquer recurrences

Divide-and-conquer is a paradigm for solving problems that works like this: We split a problem of a large
size into a fixed number of subproblems of a fraction of its size and combine their solutions in some manner
to obtain a solution to the bigger problem. Merge Sort is an example of a divide-and-conquer algorithm.

In general, if a problem of size n is split into a1 subproblems of size b1n, a2 subproblems of size b2n, up
to ak subproblems of size bkn (where b1, . . . , bk are constants between 0 and 1) the recurrences that arise
in its analysis have the form

T (n) = a1T (b1n) + · · ·+ akT (bkn) + g(n). (8)

Here, g(n) describes the “complexity” of combining the solutions to the subproblems. For example, in
Merge-Sort we split a problem of size n into two problems of size n/2 and combined their solutions using
n− 1 comparisons to obtain the recurrence C(n) = 2C(n/2) + n− 1.

There is a general formula that tells us the asymptotic behavior of the function T (n) that satisfies the
recurrence (8), assuming that the function g(n) is “sufficiently nice.” (We’ll explain precisely what this
means shortly.) The asymptotic behaviour of T is given by the formula

T (n) = Θ

(
np

(
1 +

∫ n

1

g(u)

up+1
du

))
7

where p is the unique constant such that a1b
p
1 + · · ·+ akb

p
k = 1.

For example, in the Merge Sort recurrence, k = 1, a1 = 2 and b1 = 1/2 so p is the number that solves
the equation 2 · (1/2)p = 1, namely p = 1. Then∫ n

1

u− 1

up+1
=

∫ n

1

u− 1

u2
= lnu+

1

u

∣∣∣n
1
= lnn− 1 +

1

n

The dominant term here is lnn, so C(n) = Θ(n log n), as we already know.
Let’s do another example. The following recurrence arises in the analysis of the running time of a

certain algorithm for multiplying matrices:

M(n) = 7M(n/2) + Θ(n2).

In this case, we do not even know what the function g is precisely, but only that it grows asymptotically
as n2. The value p needs to satisfy 7 · (1/2)p = 1, so p = log2 7. Let us now calculate the relevant integral,
first assuming that g(x) is exactly equal to x2:∫ n

1

u2

up+1
du =

∫ n

1
u1−log2 7 du = O(1)

because the exponent is 1−log2 7 ≈ −1.807, which is smaller than minus one, and so the integral converges.
(You can come to the same conclusion by calculating the integral.)

The actual integral
∫ n
1 g(u)/up+1 du may not have the exact same value, but since g(u) is within a

constant factor of u2 (when u is sufficiently large), so will be the two integrals and we can conclude that∫ n
1 g(u)/up+1 du = O(1). Therefore

M(n) = Θ

(
np

(
1 +

∫ n

1

g(u)

up+1
du

))
= Θ(np) = Θ(nlog2 7).

Here is a precise statement of the theorem that allows us to obtain the asymptotic behaviour of solutions
to a large number of divide-and-conquer recurrences.

Theorem 6. Assume the function T (x) is nonnegative and bounded when 0 ≤ x ≤ x0 and satisfies the
recurrence

T (x) = a1T (b1x) + · · ·+ akT (bkx) + g(x)

for x > 0 for some positive constants a1, . . . , ak and constants b1, . . . , bk between zero and one.
If g is non-negative and |dg(x)/dx| is O(xC) for some constant C, then

T (n) = Θ

(
np

(
1 +

∫ n

1

g(u)

up+1
du

))
where p is the unique constant such that a1b

p
1 + · · ·+ akb

p
k = 1.

In the Merge Sort example, g(x) = x− 1 so |dg(x)/dx| = 1 and our use of Theorem 6 is legitimate. In
the other example, we can say M(n) = Θ(nlog2 7) assuming that the function represented by Θ(n2) in the
definition of M has the absolute value of its derivative bounded by a polynomial.

The textbook states a more general version of the theorem accounting for the possibility that the
subproblem sizes might not be exactly b1n, . . . , bkn but perhaps deviate a bit from these values. Instead
of showing the general version, let’s just say that when this deviation is sufficiently small (e.g. a constant)
then the theorem continues to hold.

References

This lecture is based on Chapter 21 of the text Mathematics for Computer Science by E. Lehman, T.
Leighton, and A. Meyer. Theorem 6 was discovered by Mohammad Akra and Louay Bazzi in 1996. You
can read more about it and find its proof in these notes of Leighton.

8

http://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf

	Towers of Hanoi
	Solving recurrences
	Merge sort
	Homogeneous linear recurrences
	Divide-and-conquer recurrences

