CSI 4103 / 5138: Great Algorithms Lecture 1
University of Ottawa, Fall 2024

Last year, Alice was three times as old as Bob and Charlie together. This year she is twice as
old, and next year Charlie will be five times younger than Alice and Bob together. How old
are they?

Solution: Writing z, y, and z for their ages, we are told that

r—1=3(y—1)+(x—1)) and
r=2(y+2z) and
(x+1)+(y+1)=5(z+1).

and all we have to do is solve for z, y, and z. To do this, first we group unknowns on one side and constants

on the other:
r—3y—3z=-5

r—2y—22=0 (1)
r+y—52z=3

Then we eliminate x by subtracting the last two equations from the first:

—y—z=-5
—4dy + 2z = -8
We have now reduced the problem to one with fewer unknowns. Eliminating y gives —6z = —12 so z = 2.

Plugging in —y — z = —5 we get that y = 3, and plugging into say x + y — 5z = 3 gives « = 10, producing
the solution
=10 y=3 z=2 (2)

This algorithm is called Gaussian elimination. It can be applied to any system with the same number
of equations and unknowns. Here is how it works in general:

Algorithm GFE
Input: A system S of n linear equations with n unknowns.
If n =1 and the equation is az = b, output b/a.
Otherwise, pick a variable x and an equation e in S in which = has nonzero coefficient (the pivot).
Create a new system S’ of n — 1 equations and n — 1 unknowns:
For every equation ¢ € S other than e,
Subtract enough copies of e from €’ to eliminate z and
include the resulting equation in S’.
Apply GE to S’ to obtain an assignment to all variables except for x.
Plug this partial assignment into e to recover .
Output the completed assignment.
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That was a mouthful. Gaussian Elimination is complicated!

1 It is the algorithm (stupid)

Algorithms power the modern world. They route trains and planes and detect defects in nuclear reactors.
They choose which news articles you read and which songs you listen to. They solve your homework,



sometimes incorrectly. They decide whether your job application will end up in the digital dustbin or on
a recruiter’s desk.

We computer science students are taught a great deal about algorithms. We learn how to make them run
(programming), how to craft them and compare them (design and analysis of algorithms), how to choose
good representations (data structures), how to debug them (software engineering), and how to train them
(statistics and machine learning). In these courses we are led to think of algorithms as ingenious products
of (human) engineering. Should you want a shortest path, Dijkstra is there to help you. Need to build a
spam filter? Train a naive Bayes classifier on your emails.

This type of knowledge is powerful for building problem-solving confidence. I find it less useful in
understanding what algorithms can realistically accomplish, when we should trust them and when we
shouldn’t, and why minor changes in the input can sometimes wreak complete algorithmic havoc. To
begin thinking about questions like these we need to look into the “soul” of the algorithm.

Every week will examine one of these great algorithms and try to answer questions like:

1. Why does it work? Why does Gaussian elimination correctly solve systems of linear equations? Does
it ever fail? Why would it fail? Can its failures be patched or at least detected?

2. What makes it attractive? One reason is efficiency. Everyone likes fast algorithms. Another reason
could be robustness. The actual input to the algorithm might be noisy. For example Gaussian
elimination is supposed to solve linear equations. How would it react if the “input data” is not
exactly linear?

3. Why is it useful? Where does solving linear equations come up? To tackle this question a “reduc-
tionist” perspective is often helpful. A problem might not look like a system of linear equations—for
example it could be about finding components in a graph, or solving quadratic equations—but can
be reduced to it by picking a good representation. This may lead us to revisit the first two questions:
Why does the reduction work? How much complexity does it add to the algorithm? Is it robust?

4. Can we apply the algorithm, possibly after some tinkering, in a context different from our original
motivation? Once we have a new “hammer” (the algorithm) we humans are quite adept at seeing
“nails” (problems to attack) everywhere.

Why does Gaussian Elimination work? To get a sense of an algorithm it helps to test it on a few
examples. We already tried it once on instance (1). We can confirm that it works on this instance because
we plug in its output (2) into (1) the left and right sides are consistent. Now let’s try it on another example:

Last year, Alice was three times as old as Bob and Charlie together. This year she is twice as
old, and in five years’ time she will be exactly as old. How old are they?

The new equations are (t —1) =3((y—1)+ (2 — 1)),z =2(y+2), e +5=(y+5)+ (2 +5), or

r—3y—3z2=-5
r—2y—22=0 3)
T—Y—2=29

Let’s now run Gaussian elimination. After pivoting on x in the first equation we reduce to the system

—y—2z=-—5

4
—2y — 2z = —10. @)

If we now pivot on y in the first equation we reduce to

0=0.



This type of input is not expected by the algorithm. The code doesn’t tell us what to do if there are no
variables. As described, Gaussian Elimination will fail on this example, even though x = 10,y = 3,z = 2
is a perfectly valid solution. So is x = 10,y = 4, z = 1. There are infinitely many solutions, all of the form

r=-5+3y+32z=-10+ 62, y=-5+z2 z = any value. (5)

If you know linear algebra you can identify the source of the problem: Equations (4) are linearly
dependent. Linear dependencies cause some difficulties for Gaussian Elimination. As we will see, these
difficulties are surmountable.

2 Problems and algorithms

What do we mean when we say “Gaussian elimination works”? The question presupposes a distinction
between the problem (solving linear equations) and the algorithm (Gaussian Elimination). To clarify this
distinction it helps to abstract what we mean by a problem and what we mean by an algorithm. This is a
common source of confusion.

For our purposes a computational problem is a relation R on instance-solution pairs. For example, the
problem “square an integer” is the relation

SQ = {(x,2?) : z is an integer} = {(0,0), (1,1),(=1,1),(2,4), (=2,4),...}.
The problem “find an integer square root” is the transpose relation
SQRT = {(x* ) : x is an integer} = {(0,0), (1,1), (1, —1), (4,2), (4, —-2),... }.

An algorithm is a procedure that takes an instance x and produces solution(s) y such that (x,y) € R. For
example an algorithm for SQ is supposed to output 1 on input —1 and 2 on input 4. In the case of SQRT
there are sometimes multiple solutions (both —2 and 2 are square roots of 4) and sometimes no solutions
(3 has no square root). What should the algorithm do?

The answer to this determines the type of algorithm we want: A search algorithm is required to output
any y of its choice as long as (z,y) € R. A decision algorithm only needs to answer if such a y exists (a
yes/no question). An enumeration algorithm should output all possible y (in a suitable representation).
Later in the course we will also talk about optimization algorithms (output the best y according to some
criterion) and possibly sampling algorithms (sample a random y conditioned on (z,y) € R).

For the types of problems we will be looking at, once a solution has been found, it is fairly easy to
verify that it is legitimate. For example if your algorithm for taking square roots takes input 15376 and
produces output answer 124, you can easily verify that it is correct because 124% = 15376. In contrast if
it had output 125 you would have calculated 1252 = 15625 and concluded that the algorithm is incorrect.
Similarly, if Gaussian Elimination returns a candidate solution to some system S of linear equation you
can plug in the solution and verify that it is legitimate. For such problems, decision is no harder than
search, and search is no harder than enumeration.

The problem “solving linear equations” consists of those instance-solution pairs (S, sol), where S is a
system of linear equations like (1), and sol is an assignment like (2) that satisfies all equations simultane-
ously. The decision problem is to determine whether S has any solutions, the search problem is to find a
solution if one exists, and the enumeration problem is to list all possible solutions. One problem is that
the set of all possible solutions can be infinite as in example (3). We will need to think of a reasonable
compact representation of this infinite set.

3 Correctness

Let us begin with a less ambitious objective. Algorithm GFE might have its issues, but we do expect it
to work on instances with a unique solution (i.e., the problem {(S, sol) : sol is the unique solution to S}).
Why is that?



The heart of the GE algorithm is in lines 5-6. This procedure of subtracting multiples of one row from
another is called an elementary row operation. The key property of elementary row operations is that they
are invertible. Therefore they preserve the solution space. For example, the systems

r—3y—3z2=-5 rT—3y—3z2=-5 r—3y—3z2=-5
r—2y—22=0 —y—2z=-5 —Yy—2=-95
r+y—5z=3 r+y—5z=3 -4y + 2z = -8

all have the same solution space consisting of the unique assignment x = 10,y = 3,z = 2.

Claim 1. Let S be a system of linear equations and e be an equation in S. Let T be obtained from S by
adding a multiple of e to some other equation €. Then T has the same solutions as S.

The reason is that being a solution is closed under taking linear combinations of the equations, for
example:
—y—z=(r—-3y—3z)— (r —2y—2z)=—-5—-0= -5,

Therefore, any common solution to x — 3y — 3z = —5 and x — 2y — 2z = 0 must also solve —y — z = —5.
Conversely, any solution to —y — 2z = —5 and « — 3y — 3z = —5 must also solve x — 2y — 2z = 0 because

x—2y—2z=(—-y—2z)+ (r — 3y — 3z).

Proof. Take any solution a to S. Then a solves all the equations of T except possibly the one, let’s call
is e*, that was obtained by adding a multiple of e to €¢/. As a solves both e and €' and e* is a linear
combination of e, €/, a solves e*.

Conversely, if a is a solution of T', it solves all equations of S except possibly €’. As e* was obtained by
adding a multiple of e to €/, € can be obtained from e by subtracting the same multiple of e*. Therefore
e* is a linear combination of e and ¢’. It must also be satisfied by a. O

Proposition 2. Assuming S has a unique solution, algorithm GE applied to S finds it.

Proof. We apply induction on n. When n = 1 the system has the form ax = b. If a = b = 0 the system
would have infinitely many solutions (any value of x would solve it), and if @ = 0 but b # 0 it would have
no solutions. Therefore a must be nonzero and step 1 outputs the unique solution =z = b/a.

Now assume GE solves all systems with n — 1 variables and equations that have a unique solution.
Assume also the input S to GFE has a unique solution. As S’ U e was obtained from S by elementary row
operations, by Claim 1 they must have the same solutions. In particular, S’ by itself must have at least
one solution. If it had two (or more), these could be extended to two (or more) solutions to S’ U e, and
therefore S, by solving for z in e. So S’ must have exactly one solution. By inductive hypothesis, the
recursive call GE(S’) in line 7 finds this solution. Line 8 extends this to a valid solution of S’ U e and
therefore also S. O

Armed with this success we can now tackle systems like (3) that might not have a unique solution.
In that example x = 10,y = —5 + z is a solution for any choice of z, and all the solutions have this
form. To account for this type of example, we could ask of the algorithm to output some set FREFE
of free variables and an assignment to the remaining variables in terms of the free variables. Under this
convention taking FREE = {z} and z,y as in (5) is a valid solution to (3). Another valid solution is
FREE ={y},z=5+y,z = 10.

Now that we have set expectations, let’s understand why algorithm GFE fails to meet them. When
attempting GE on system (3), the algorithm derived the equation 0 = 0 before “using up” all its variables
(variable z in that example). As 0 = 0 is a tautology, this suggests z should be allowed to take any value
and the algorithm can set it free. It seems sensible to append the following line of code to GE:

If S has the form 0 = 0 but there are still unused variables, set all of them free.



Where in the code of GE should this line be inserted? To answer this question we should “debug” GE on

the problematic example (3) and see where it crashed. The point of failure is line 2: We are asked to pick

an x, but there is no x to be picked in the system 0 = 0! The modification should be made before line 2.
There is one more type of system we need to handle: A system with no solution like

r—3y—3z=-5
x—2y—2z=1 (6)
rT—y—2z=2>5

Let’s now run Gaussian elimination. Pivoting on x in the first equation gives

—y—z=—06
—2y — 2z = —10.
Now pivoting on y gives 0 = —2, a contradiction! In this case GE should declare that there is no solution:

If S has the form 0 = b for nonzero b, output no solution.

There is still one minor “bug” in line 1 of GE: even in the base case n = 1 we have to handle the possibility
of the coefficient a being zero. As this was already addressed in the modifications, it is sensible to fold the
base case in there as well. The resulting algorithm is attributed to Gauss and Jordan.

Algorithm GJE (Gauss-Jordan elimination)
Input: A system S of m linear equations with n unknowns.
1 If S has the form 0 = 0 or is empty, output the assignment in which all variables are free.
If S has the form 0 = b for b # 0, output no solution.
Otherwise, pick a variable x and an equation e in .S in which x has nonzero coefficient.
Create a new system S’ of m — 1 equations and n — 1 unknowns:
For every equation ¢’ € S other than e,
Subtract enough copies of e from ¢’ to eliminate z and
include the resulting equation in S’.
Apply GE to S’ to obtain an assignment to all variables except for x.
Plug this partial assignment into e to recover x in terms of the free variables.
Output the completed assignment.
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The number of equations and the number of variables no longer have to be the same.

Theorem 3. GJE outputs a description of all the solutions of S if there are any, and no solution if
there aren’t.

The theorem is proved similarly to Proposition 2 (using Claim 1).

4 Features and limitations

How efficient is Gaussian elimination on m equations with n unknowns? In the worst case it applies m — 1
elementary row operations in step 4-5, then runs recursively on an instance with m — 1 equations and n — 1
unknowns, and completes the assignment in step 9. Step 5 consists of O(n) additions or divisions, so each
execution of the loop 4 entails O(mn) operations. Step 8 involves at most O(n?) operations (there are at
most n — 1 free variables and a constant, and computing the coefficient of each takes O(n) operations).
The number of operations C'(m,n) then satisfies the recurrence

C(m,n) = C(m —1,n — 1) + O(mn + n?).



When m = 0 (no equations) or n = 0 (no variables), the complexity is O(1), from where
C(m,n) = O(n(m+ n) min{m, n}).

When m = n, the algorithm takes cubic time in the number of variables. In general, it takes mn + m
numbers to describe a system with m equations and n unknowns so the worst-case complexity is at most
the 1.5th power of the input size.

Some linear systems that arise in applications are sparse: The number of variables that participates in
a typical equation is much smaller than n. If, say, every equation contains at most 5 variables then the
system can be specified using the 5(m + 1) = O(m) coefficients (plus a bit of extra information that links
each coefficient with an equation and a variable). For such sparse systems the worst-case running time
of Gaussian Elimination is cubic in the size of the instance, which can be taxing on large instances (say
m = 10000 which is quite small in modern applications!)

As this cubic upper bound is worst case, one may ask if it is attained in “typical” applications. Making
precise mathematical sense of this question would lead us too far afield so let me try to argue informally
that the answer is yes. The reason is that elementary row operations are not “friendly” to sparse equations.
If e and €’ have 5 variables each then adding copies of e to ¢’ can at worst double the number of variables
to 10. Typically we might expect the number of variables in €’ to almost double (this can be made more
precise in a probabilistic model of a sparse system). The system becomes a bit more dense after each
elimination step. Quantifying this increase in density is tricky but I believe that after half the variables
are eliminated the system becomes very dense: A typical equation will contain a constant fraction of the
remaining variables, resulting in asymptotically cubic overall complexity. (The complexity of Gaussian
Elimination for sparse linear systems could be an excellent course project.)

A nice feature of Gaussian Elimination is that it allows for an in-place implementation. The space used
to describe the instance can be reused to describe all intermediate states and the solution. This is usually
how the algorithm is described in linear algebra textbooks: A (augmented) matrix specifying the system
is set up, and at the end the solution appears in place of the right-hand side.

An important property of Gaussian Elimination is that it can be implemented with perfect precision.
If the input coefficients are provided as rational numbers and the additions and divisions in the elementary
row operations are implemented without loss of accuracy, the algorithm will output an exact solution.
(The numerators and denominators will typically grow during an execution, however, resulting in “bit
complexity” that is higher than cubic.) Gaussian Elimination is in essence an algebraic algorithm that
only relies on basic arithmetic (4, —, x,<). It works in any “number system” with these operations. We
will see shortly that the algebraic nature of Gaussian Elimination is a feature in some contexts but a
limitation in others.

5 Certifying unsatisfiability

Suppose you implemented Gaussian Elimination but you are not quite sure that your code works correctly.
You run it on system S and it outputs no solution. Can you trust this output? If it did output a solution,
you could have plugged it in and verified that it works. Is there anything you can do to verify that S has
no solution?

Let’s look at example (6) again. What happens if I add up the first and third equation and subtract
the second equation twice? The left-hand side is

(x—3y—32)—2(x—2y—22)+(x—y—2)=(1-2+1)ax+(-3+4—1)y+(-3+4—1)z = 0x+0y+0z =0

no matter what x, y, and 2z are set to. But the right-hand side is =5 —2-145 = —2. Thus 0 would equal
to —2, which is clearly impossible. The only possible explanation is that x, y, and z solving this system
cannot exist!

Let’s abstract this reasoning. We argued that a system cannot have a solution by coming up with
some linear combination of the equations that makes the left-hand side vanish but not the right-hand side.



Let’s call such a linear combination of the equations contradictory. The existence of a contradictory linear
combination is one reason that a system is unsolvable. Could there be others? Amazingly, no; this trick
always works!

Theorem 4. A system of linear equations is unsatisfiable if and only if there exists a contradictory linear
combination of the equations.

The reason this theorem holds is that elementary row operations preserve the existence of contradictory
linear combinations. So if the theorem holds for the “base cases” (line 1 in GJFE) then it must hold for all
systems as they are reduced to these base cases via elementary row operations. We used similar logic to
prove Proposition 2.

Theorem 4 posits the existence of contradictory linear combinations for unsatisfiable linear systems,
but how do we go about finding one? One possibility is to augment algorithm GJE so that it “tracks”
such combinations. This turns out not to be necessary.

How did I come up with the contradictory linear combination for example (6)7 I did not know ahead
of time that I needed to take 1, —2, and 1 copies of the first, second, and third equations, respectively. 1
had set up unknowns a, b, and ¢ for these three numbers. What I wanted to happen is for the left-hand
side to vanish for some choice of a, b, ¢, namely

alx —3y —32)+b(r —2y—22)+clx—y—2)=0 for all z, y, 2.
This is only possible if all coefficients in front of x, y, and z vanish simultaneously, namely
a+b+c=0 (z-coeflicient)
—3a —2b—c=0 (y-coefficient) (7)
—3a —2b—c=0 (z-coefficient),
but the right-hand side does not vanish
—ba + b+ 5c # 0.

This is almost like a system of linear equations, except that there is one inequality. If this system had a
solution, then I can obtain any number I want on the right-hand side of the inequality by scaling a, b, and
¢ simultaneously. Therefore the inequality is “equivalent” to the equality

—5a+b+5c=1. (8)

I now have a linear system (7-8) whose solutions are the contradictory linear combinations for system (6).
Using Gaussian Elimination, I solve (7-8) to obtain a = —%, b=1,¢= —1 Indeed, linearly combining
equations (6) with coefficients a, b, ¢ produces the contradiction 0 = 1.

In conclusion, the problem of finding a contradictory linear combination for a linear system reduces
to the problem of solving linear equations and can therefore be solved by Gaussian Elimination. Thus
Gaussian Elimination can certify that a system has no solution.

At this point it is useful to pass to matrix notation, in which (6) is represented as

Nl

1 -3 =31 [z -5
1 -2 2| |y|l=1|1
1 -1 -1} |2 5

To find a contradictory linear combination, we look for a row vector such that

1 -3 -3 -5
[a b c] 1 -2 -2 =0 and [a b c] 1| =1
1 -1 -1 5

In this notation, Theorem 4 says (with x, b column vectors and y a row vector):

Theorem 4°’. Ax = b has no solution if and only yA = 0,yb = 1 has a solution.



6 Learning linear functions

The final grade formula for Great Algorithms is 30% homework, 30% midterm, and 40% project. Suppose
you did not know this formula and would like to learn it. You have records of students who took the course:

h m P f
Alice 87.78  96.67 80.00 87.33
Bob 100.83 100.00 95.00 98.25
Charlie 84.44  76.67 80.00 80.33
Dave 48.89  86.67 72.50 69.67
Eve 84.72  96.67 85.00 88.42

This looks like a good setup for Gaussian elimination. All you need to do is solve the linear system

87.78 96.67 80.00 87.33
100.83 100.00 95.00( | h 98.25
84.44 76.67 80.00| [m| = |80.33
48.89 86.67 72.50( |p 69.67
84.72  96.67 85.00 88.42

Gaussian elimination says there is no solution! How is this possible?

The reason is that the recorded grades have been rounded to two digits of precision. Even though the
rounding error is tiny it destroys the solution. If the records were perfect, the right-hand side would have
been linearly dependent on the left. Rounding is a non-linear operation. It destroys not only the solution
but the linear dependence itself, resulting in a system with no solutions (see Figure 1).

FIGURE 1: Vectors a, b, ¢ (in blue) are linearly dependent. After rounding them
to the black vectors the linear dependence is destroyed.

As there are only three unknowns that we want to solve for, we can hope that some three of the five
records should be sufficient, as long as they happen to be linearly independent. Indeed, running Gaussian
Elimination on the first three rows of the data matrix gives the solution h =~ 0.294,m =~ 0.301,p =~ 0.405.
This is a pretty good approximation. Grading weights are usually assigned in multiples of 5%; if we round
to the closest such multiple we recover the actual scheme.

The uOttawa administration asks that grades be rounded to the closest integer, so it may be more
realistic to expect that you only have access to coarsely rounded records like

h m p f
Alice 88 97 80 &7
Bob 101 100 95 98
Charlie 84 77 80 80
Dave 49 37 73 70
Eve 8 97 85 88

Apply Gaussian Elimination to the first three rows now gives h ~ —.006, m =~ .351,p ~ .669. This is very
far from the ground truth. Gaussian Elimination is very brittle to rounding and other types of errors.



7 Modular Gaussian Elimination

A common setup in machine learning is that we have example input-output pairs (x, f(z)) for some
unknown function f and we want to “learn” f. In the example we just saw x are the homework, midterm,
and project grades, and f(x) is the final grade.

To make sense of this question it is common to impose some restriction on what f should look like.
In the grading example we assumed that f is a linear function and reduced the problem to learning its
coefficients h, m, and p by solving a suitable linear system.

Let us now move to the other extreme and assume that f is as “nonlinear” as it can be. Here is a setup
that may appear contrived but turns out to be quite enlightening. The inputs x are rows of n numbers x{
up to z,, each of which is equal to +1 or —1. The output f(x) is the product of some unknown subset of
these numbers, for example

1 w2 x3 x4 | f(x)
-1 +1 +1 +1 +1
+1 -1 -1 +1| -1
-1 -1 +1 -1 +1
-1 -1 41 41| -1
+1 -1 +1 +1| -1

Here f(x) happens to be the product of 9 and z4. The problem of learning hidden parities is to figure
out which subset of numbers multiplies to f(z).

One candidate algorithm is to test out all possible subsets: The empty set (which always multiplies to
+1), the singletons z1, z2, x3, x4, all pairs z1xe, T123, . ..,x314, and so on. This works well when n is small
but becomes intractable rather quickly because the number of possible subsets is 2. When n equals 80 it
is quite hopeless.

Gaussian Elimination happens to be the perfect algorithm for learning hidden parities. All we need to
do is solve the a system of modular linear equations:

100 0] 0
0110b1 1
1101 b2:0 (mod 2)
1100b3 1
010 of " 1

obtained by replacing +1 and —1 from the data table with the values 0 and 1 modulo 2, respectively,
representing the parity of the number of minus signs.

Gaussian elimination works perfectly well in arithmetic modulo 2. In this example it outputs the unique
solution by = 0, by = 1, bg = 0, by = 1, indicating that f(x) depends on z9 and x4 but not on z; and x3.
In general, the hidden subset consists of those x; for which b; equals 1—in short, f(z) = :L“l{l R

Until 2012, Gaussian Elimination was the only known algorithm for solving linear equations modulo
two. That year Prasad Raghavendra came up with an ingenious alternative. (Comparing Raghavendra’s
algorithm to modular Gaussian Elimination could be another project.)

A number system in which you can add, subtract, multiply, and divide (except by zero) is called a
field. Examples you should be familiar with are rational numbers and arithmetic modulo a prime. Another
important class of examples are finite extension fields which we might see later in the course. Gaussian
Elimination works well over fields and all the theorems we proved in this lecture are true for them. In
arithmetic over non-prime modulus, pivots that are not invertible (like 4 modulo 6) are problematic. As
long as such pivots can be avoided, Gaussian Elimination is correct.
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