
CSI 4103 / 5138: Great Algorithms Lecture 4
University of Ottawa, Fall 2024

The Fourier transform is a conversion between two representations of a function: the list representa-
tion and the polynomial representation. Let’s start with functions over the n-dimensional Boolean cube
{−1,+1}n. Its inputs are all 2n bit strings of length n. We’ll represent bits by the numbers +1 and −1.
Here are two examples:

• The maximum of two bits max2 : {−1,+1}2 → {−1,+1} is

max2(−1,−1) = −1, max2(−1,+1) = +1, max2(+1,−1) = +1, max2(+1,+1) = +1. (1)

• The majority of three bits maj3 : {−1,+1}3 → {−1,+1} given by

maj3(−1,−1,−1) = −1, maj3(−1,−1,+1) = −1, maj3(−1,+1,−1) = −1, maj3(−1,+1,+1) = +1

maj3(+1,−1,−1) = −1, maj3(+1,−1,+1) = +1, maj3(+1,+1,−1) = +1, maj3(+1,+1,+1) = +1.

These are the list representations of max2 and maj3. Any function on n-bit inputs can be defined by listing
its 2n evaluations in some predetermined order. It can also be specified as a polynomial :

max2(x1, x2) =
1
2 + 1

2x1 +
1
2x2 −

1
2x1x2 (2)

maj3(x1, x2, x3) =
1
2x1 +

1
2x2 +

1
2x3 −

1
2x1x2x3.

The monomials that are used to built up these polynomials are the 2n parity functions 1, x1, x2, x1x2, x1x2x3,
etc. Every real-valued function f(x1, . . . , xn) can be uniquely represented as a linear combination of the
2n possible parities in variables x1 up to xn.

The parities are indexed by the set S of variables that participate in it, e.g., x1x3 is indexed by the
set {1, 3}. We can also write down the polynomial representation by listing all 2n coefficients f̂(S) of the
parities, for example

m̂ax2(∅) = 1
2 , m̂ax2({1}) = 1

2 , m̂ax2({2}) = 1
2 , m̂ax2({1, 2}) = −1

2 .

and

m̂aj3(∅) = 0, m̂aj3({1}) = 1
2 , m̂aj3({2}) = 1

2 , m̂aj3({3}) = 1
2

m̂aj3({1, 2}) = 0, m̂aj3({1, 3}) = 0, m̂aj3({2, 3}) = 0, m̂aj3({1, 2, 3}) = −1
2 .

These are the Fourier representations of max2 and maj3, respectively. The Fourier transform is the
conversion from the list representation of f to the Fourier representation f̂ .

This variant of the Fourier transform for functions over the Boolean cube is sometimes called the
Fourier-Walsh transform. We’ll talk in a bit about other types of functions.

1 The mathematics of the Fourier transform

Algebra

How did I calculate the Fourier transforms of max2 and maj3 from their list representations? The key fact
is that any function is a linear combination of point functions pointa, namely functions that evaluate to
one at a specific input x = a and zero at all other inputs x ̸= a.

For example, the max2 function is a linear combination of the four point functions point(−1,−1),
point(−1,+1), point(+1,−1) and point(+1,+1) with coefficients

max2 = −1 · point(−1,−1)+1 · point(−1,+1)+1 · point(+1,−1)+1 · point(+1,+1) . (3)

1

When we evaluate both sides at an input x, say x = (−1,+1), only the corresponding point function
point(−1,+1)(x) does not vanish. We can read off the value max2(x) from its coefficient. This is precisely
the list representation of max2, only written in different notation.

All we have to do now is figure out the polynomial/Fourier representation of the point functions. Once
we have those we can add them up. The advantage of working with point functions is their multiplica-
tivity. For example point(−1,+1)(x1, x2) = point−1(x1) point+1(x2). We reduced the problem to finding a
polynomial for the univariate point function pointa(x) (when a and x are single bits). This is the linear
function

pointa(x) =
1 + ax

2
.

When a and x are equal, both sides are (1 + 1)/2 = 1. When they are different, they are (1 − 1)/2 = 0.
By multiplicativity,

pointa1,a2(x1, x2) =
1 + a1x1

2
· 1 + a2x2

2

and all we have to do is plug this into (3)

max2(x1, x2) = −1 · 1− x1
2

· 1− x2
2

+ 1 · 1− x1
2

· 1 + x2
2

+ 1 · 1 + x1
2

· 1− x2
2

+ 1 · 1 + x1
2

· 1 + x2
2

.

and simplify to obtain formula (2).
This strategy works in general: The polynomial representation of a point function given by its 2n

evaluations f(a) as a ranges over {−1,+1}n is obtained by simplifying the expression

f(x) =
∑

a∈{−1,+1}n
f(a) pointa(x) =

∑
a1,...,an∈{−1,+1}

f(a1, . . . , an) ·
1 + a1x1

2
· · · 1 + anxn

2
. (4)

Formula (4) gives one method of expanding f as a polynomial in its variables. Could other methods give
different answers? Luckily, it turns out not: The polynomial representation in (4) is unique.

Geometry

To understand why we need to think geometrically. We can visualize the list representation (1) of max2
as the 4-dimensional vector (−1,+1,+1,+1). Each “axis” in this vector space is labeled by an input:
the first one by (−1,−1), the second one by (−1,+1), and so on. Formula (3) describes this vector as
a linear combination of the standard basis vectors point(−1,−1) = (1, 0, 0, 0), point(−1,+1) = (0, 1, 0, 0),
point(+1,−1) = (0, 0, 1, 0), and point(−1,−1) = (0, 0, 0, 1):

−1
+1
+1
+1

 = −1 ·


1
0
0
0

+ 1 ·


0
1
0
0

+ 1 ·


0
0
1
0

+ 1 ·


0
0
0
1

 .

The polynomial expansion (2) represents the same vector in a different basis: the basis of parity
functions 1 = (+1,+1,+1,+1), x1 = (−1,−1,+1,+1), x2 = (−1,+1,−1,+1), x1x2 = (+1,−1,−1,+1). In
this notation, (2) becomes

−1
+1
+1
+1

 =
1

2
·


+1
+1
+1
+1

+
1

2
·


−1
−1
+1
+1

+
1

2
·


−1
+1
−1
+1

− 1

2
·


+1
−1
−1
+1

 .

From a geometric point of view, the Fourier transform is nothing but a change of basis formula! It
converts from the the standard representation of f as a linear combination of the 2n point functions

2

pointa : a ∈ {−1,+1}n to the polynomial representation of f as a linear combination of the 2n parity
functions parityS =

∏
i∈S xi : S ⊆ {1, . . . , n}. As the dimension of both bases is the same and we have

conversion formulas in both directions, linear algebra tells us that the parities must be linearly independent
and therefore produce a unique Fourier representation.

If you did not follow this argument do not despair because geometry reveals a much more interesting
reason behind the linear dependence of the parities: They are mutually orthogonal. When n = 2, for
example, x1 · (x1x2) = (−1,+1,−1,+1) · (+1,−1,−1,+1) = 0, and the same goes for the other five pairs.
There is an algebraic reason behind these cancellations: The dot product x1 · (x1x2) is the sum of the
products of the corresponding entries

x1 · (x1x2) =
∑
a1,a2

a1(a1a2) =
∑
a1,a2

a21a2 =
∑

a1,a2∈{−1,+1}

a2 = 0

and the x1-part cancels out because x21 = 1. This is where the cumbersome representation of bits by −1s
and +1s pays off: When we evaluate the dot product of any two distinct parities, we sum up the evaluations
of a third parity. This third parity keeps shifting between −1 and +1 and is therefore zero.

Lemma 1. The 2n parity functions are mutually orthogonal when viewed as 2n-dimensional vectors.

Orthogonality in particular implies linear independence, but it tells us much more. First, the Fourier
coefficients f̂(S) must equal the projections of f onto the parity determined by S, for example

m̂aj3({1, 3}) =
maj3 ·(x1x3)
∥x1x3∥2

=
∑

a∈{−1,+1}3

maj3(a1, a2, a3)a1a3

sum of 23 (±1)2
=

1

23

∑
a∈{−1,+1}n

maj3(a1, a2, a3)a1a3.

In this example you can verify that the sum zeroes out: maj3(a1, a2, a3) and a1a3 are equal on four out of
the eight inputs and different on the other four.

Probability

The last expression has a probabilistic interpretation: It is the average of the values obtained when f is
shifted by the parity x1x3. In general,

f̂(S) = average value of (f · parityS) =
1

2n

∑
a∈{−1,+1}n

f(a) parityS(a). (5)

When S is the empty set, parity∅ = 1, so f̂(∅) is nothing but the average value of f . If we had to

summarize all of f by one number, this would be it. What do f̂({1}) and f̂({5, 7}) tell us? We’ll come
back to this and more shortly. But now that we have a formula let’s talk about algorithms.

Computation

Computing the Fourier Transform means taking the list of 2n values f(a) and producing the list of 2n

Fourier coefficients f(S). Both the input and output have size N = 2n so it makes sense to express the
complexity in terms of this N . Evaluating (5) would entail N2 operations: It takes N = 2n additions to
calculate each Fourier coefficient and there are N = 2n of them to calculate.

There is a faster recursive algorithm. It is easiest to describe it in the language of polynomials. Suppose
that we have figured out the polynomial representations of the functions

f−(x1, . . . , xn−1) = f(x1, . . . , xn−1,−1) and f+(x1, . . . , xn−1) = f(x1, . . . , xn−1,+1).

3

How can we combine them into a single polynomial representation of f? What we want f to do is produce
f−(x1, . . . , xn−1) when xn is −1 and f+(x1, . . . , xn−1) when xn is +1. We can resort to a tried and tested
trick: Write f as a linear combination of two point functions.

f = f− · point−1(xn) + f+ · point+1(xn)

= f− · 1− xn
2

+ f+ · 1 + xn
2

=
1

2
(f+ + f−) +

1

2
(f+ − f−)xn.

The term 1
2(f++ f−) contains those monomials that exclude xn, while the term 1

2(f+− f−) contains those
monomials that include it. The corresponding formula for the monomial/Fourier coefficients is

f̂(S) =
1

2
(f̂+(S) + f̂−(S)) and f̂(S ∪ {n}) = 1

2
(f̂+(S)− f̂−(S)) (6)

for every subset S of {1, . . . , n− 1}.

Algorithm FFW (Fast Fourier-Walsh Transform)
Input: A list representation of f : {−1,+1}n → R.
1 If n = 0, output the value f().

2 Calculate f̂+ = FFW (f+) and f̂− = FFW (f−).

3 Calculate f̂ using (6) and output it.

The correctness of the algorithm follows from induction by (6). The base case n = 0 holds because a
function with no inputs is a constant, so its list and Fourier representations are identical.

Here is an example run of FFW when f = max2. The algorithm needs to calculate the Fourier-Walsh
transforms of f+ = max2(x1, 1) and f− = max2(x1,−1) first. f+ decomposes into f++ = 1 and f+− = 1,
obtaining f+ = 1

2(f++ + f+−) +
1
2(f++ − f+−)x1 = 1. It similarly obtains f− = x1. In step 3 they are

combined into

f = 1
2(f+ + f−) +

1
2(f+ − f−)x2 =

1
2(1 + x1) +

1
2(1− x1)x2 =

1
2 + 1

2x1 +
1
2x2 −

1
2x1x2.

2 Polynomials, complexity, and approximation

A key goal of the theory of computation is to characterize the computational complexity of various functions
that come up. The Fourier representation is sometimes a helpful indicator of complexity.

One natural complexity measure of a polynomial is its degree. Low-degree polynomials have relatively
few “degrees of freedom.” A linear function over the n-dimensional Boolean cube is completely specified
by its mean f̂(∅) and its n level-1 Fourier coefficients f̂({1}), . . . , f̂({n}). More generally a degree-d
polynomial is determined by its Fourier coefficients of size d or less. There are at most 2nH(d/n) of them,
where H(p) = −p log p − (1 − p) log(1 − p) is the binary entropy function. When d is smaller than n by
some factor this is much less than the 2n values it takes to specify the function as a whole.

The compactness of polynomial representations can be exploited by algorithms. Suppose we are given
input-output examples (x, f(x)) for some unknown function f . If f is a degree-d polynomial we can try
to reconstruct the polynomial representing f by interpolating its Fourier coefficients from these examples.
This amounts to solving a linear system, which can be accomplished in time polynomial in 2nH(d/n),
provided there are sufficiently many linearly independent equations in the system.

Some simple types of computations are naturally captured by low-degree polynomials. As an example,
the function

f(x, y, z) = “if x = 1 then y else z”

4

has degree 2. It is unlike the 72% of the other Boolean functions on 3 inputs whose degree is 3. It has
degree 2 because all point functions that show up in its list representation

f = y · point1(x) + z · point−1(x) = y · 1 + x

2
+ z · 1− x

2

have degree 2 or less.
A decision tree is an arbitrary nested if-then-else program of this form. The depth of the decision tree

is the number of nested levels plus one. By the same reasoning any depth-d decision tree is a degree-d
polynomial. Because it is a low-degree polynomial, some algorithmic tasks such as learning from random
examples are easier for decision trees than for more complex functions.

A more complex type of function is a formula in disjunctive normal form, namely an AND of terms,
each of which is an OR of literals (variables or negated variables) such as

(x and (not y) and z) or (x and w) or (u and w and (not z)).

Terms could represent qualification requirements. For example a student is eligible for a scholarship if they
are in an upper year and in CS and have a GPA of 3 or more, or if they are Francophone and does not
live too close to home, or if they are not in an upper year but won a contest. Such formulas do not have
a low-degree representation. It turns out, however, that they can be “approximated” by polynomials of
fairly low degree.

To illustrate how this works let’s look at the formula

f = (x1 and x2) or (x3 and x4) or (x5 and x6).

Its complete polynomial representation is too long to write down. The lowest two levels are

f = −.15625 + .28125(x1 + x2 + x3 + x4 + x5 + x6) + higher order terms.

What if we discard the higher order terms? Let’s start with the single degree-zero term f̂(∅) = −.15625.
This is the mean value of f . Suppose we used this constant f̂(∅) as an approximation of f(x). This
approximation is not too good: f evaluates to −1 or +1 at any input, and f̂(∅) is quite far from both −1
and +1.

This approximation, however, is best possible on average among all constants c. The Fourier coefficient
f̂(∅) minimizes the average of (f(x)− c)2. Moreover, there is a formula for this minimum square average
error. It is precisely 1 − f̂(∅)2, which is about 0.975 in our example. If we want a decent approximation
we have to look beyond constants.

Let’s now include the degree-1 parts of f in the approximation. We obtain the linear function

ℓ(x) = f̂(∅) + f̂({1})x1 + · · ·+ f̂({6})x6 = −.15625 + .28125(x1 + x2 + x3 + x4 + x5 + x6).

Here is a comparison of f(x) versus ℓ(x) on ten randomly chosen xs:

x f(x) l(x)

000111 -1 -0.15625

011011 -1 -0.71875

011011 -1 -0.71875

101100 -1 -0.15625

011101 -1 -0.71875

010010 +1 0.40625

101011 -1 -0.71875

110101 -1 -0.71875

010100 +1 0.40625

001001 +1 0.40625

5

The empirical square error
∑

(f(x) − ℓ(x))2 is about 2.877, or less than 30% per run. Among all linear
functions, the one that we chose minimizes this error when averaged over all 64 possible inputs x. There
is again a formula for the error:

average of (f(x)− ℓ(x))2 = 1− f̂(∅)2 − f̂({1})2 − · · · − f̂({6})2.

In our example this is about 0.499. The empirical estimate of 30% was optimistic but not by much. A
50% error for a linear approximation of a degree-6 ±1-valued polynomial is not too bad!

In general, the degree-d approximation of any (not necessarily Boolean-valued) function f that mini-
mizes the mean-squared error is the sum of the first d Fourier levels

∑
S:|S|≤d f̂(S) parityS . This follows

from orthogonality of the parities. Just like adding terms to the spectral decomposition of gave succes-
sively better approximations of a matrix, taking higher degree terms in the Fourier decomposition of a
function also improves the approximation. The Fourier representation is in fact a special case of spectral
decomposition.

For a general function f , the mean-square error of the degree-d approximation equals(
average of f(x)2

)
−

∑
S:|S|≤d

f̂(S)2.

When d equals n, there is no approximation error, and we obtain Parseval’s identity

average of f(x)2 =
∑
S

f̂(S)2. (7)

For a ±1 valued function f , f(x)2 always equals one and the squared Fourier coefficients add up to one.
One weakness of polynomial degree as a measure of complexity is that dense parity functions, such as

the parity of all the bits, do not qualify as simple. This is contrary to experience as parities are easy to
compute in practice.

3 The modular Fourier transform

The Fourier transform for functions on the Boolean cube is sometimes useful for reasoning about compu-
tational processes but hasn’t found much applications outside of theory. There is another type of Fourier
transform whose practical significance is indisputable.

Let’s start with Boolean functions f : {−1,+1} → R with a one-bit input (n = 1, N = 2 in the notation
of Section 1). Their Fourier transform is

f(x) = f̂(0) + f̂(1)x, f̂(0) =
f(1) + f(−1)

2
, f̂(1) =

f(1)− f(−1)

2
.

I snuck in a change of notation here: Instead of indexing the Fourier coefficients by the sets ∅ and {1}, I
used the numbers 0 and 1.

One important feature of the parity basis 1 = (1, 1) and x = (1,−1) is that it is not only orthogonal as
a basis of functions, but it is also a group: The pointwise product of two basis functions is a basis function.
The multiplication table for 1 and x looks like this:

· 1 x

1 1 x
x x 1

This is precisely the same as the multplication rule for the numbers +1 and −1:

· +1 −1

+1 +1 −1
−1 −1 +1

(8)

6

The monomials 1 and x in the Fourier representation “play the same role” as the values +1 and −1 that
we represent bits by.

How does this reasoning generalize to functions that take three input values, i.e., trits? Let’s name
these trits ω0, ω1, and ω2. We want to represent functions f over domain {ω0, ω1, ω2} by polynomials. By
dimension-counting f should have three “degrees of freedom”, suggesting a quadratic representation

f(x) = f̂(0) + f̂(1)x+ f̂(2)x2. (9)

How should the multiplication table of 1, x, and x2 look like? In analogy to the bit setting, they should
multiply exactly like the corresponding numbers ω0, ω1, ω2. Can we make up a “multiplication table”
like (8) out of some three numbers ω0, ω1, ω2? A moment’s thought should convince you that this is quite
challenging. It is in fact impossible if we insist on real numbers.

There is a beautiful solution if we are willing to tolerate complex numbers. Associate the monomial xj

by the complex root of unity ωj = e2πij/3 = cos(2πj/3) + i sin(2πj/3). These can be genuinely multiplied:

· ω0 ω1 ω2

ω0 ω0 ω1 ω2

ω1 ω1 ω2 ω0

ω2 ω2 ω0 ω1

Geometrically, the monomials 1, x, x2 are now represented by the complex basis vectors

1 =

 1
ω0

ω2
0

 =

11
1

 x =

 1
ω1

ω2
1

 =

 1

e2πi/3

e4πi/3

 x2 =

 1
ω2

ω2
2

 =

 1

e4πi/3

e8πi/3

 =

 1

e4πi/3

e2πi/3

 .

If we take the “dot product” of x and x2 naively we would get the result 1 · 1 + ω1ω2 + ω2
1ω

2
2 = 3 so

it appears that we lost orthogonality. The issue is not with orthogonality but with the definition of dot
product for vectors with complex entries: When calculating a · b we need to conjugate the entries of b
before evaluating the sum of products:

a · b = (a1, · · · , an) · (b1, · · · , bn) = a1b1 + · · ·+ anbn.

Under this correct definition of complex dot product you can verify that 1, x, and x2 are orthogonal, and
each has squared length 3.

In summary, the Fourier transform modulo 3 is defined for complex-valued functions f over the third
roots of unity {1, e2πi/3, e4πi/3}, i.e., f : {1, e2πi/3, e4πi/3} → C. These functions have a unique quadratic
polynomial representation (9). In analogy to (5), the Fourier coefficients f̂(0), f̂(1), f̂(2) are

f̂(j) = average of
(
f · xj

)
= average of (f · x−j) =

1

3

(
f(1) · 1 + f(e2πi/3) · e−2πij/3 + f(e4πi/3) · e−4πij/3

)
.

It is convenient to give the name ω to the “primitive” root of unity e2πi/3. In this notation, the domain of
f is {1, ω, ω2} and its Fourier transform is

f̂(j) =
1

3

(
f(1) + f(ω)ω−j + f(ω2)ω−2j

)
.

These formulas generalize to arbitrary modulusN ≥ 2. We set ω to e2πi/N . Functions f : {1, ω, . . . , ωN−1} →
C have a unique degree-(N − 1) polynomial representation

f(x) = f̂(0) + f̂(1)x+ · · ·+ f̂(N − 1)xN−1 (10)

with the Fourier coefficients given by

f̂(j) =
1

N

N−1∑
k=0

f(ωk)ω−kj = average value of (f(x)x−j). (11)

7

The basis functions xj = (1, ωj , ω2j , · · · , ω(N−1)j) are orthogonal as vectors under the complex dot product.
Their role is analogous to that of the parity functions parityS in the Fourier transform over the Boolean
cube. The size of S corresponds to the magnitude of j: The zeroth coefficient f̂(0) is the average value of
f , which is the best approximation among all constants c with respect to the average of |f(x) − c|2. The
first-level truncation f̂(0) + f̂(1)x is the best approximation among all linear functions ℓ(x) with respect
to the average of |f(x)− ℓ(x)|2, and so on.

4 The Fast Fourier Transform

Calculating the modular Fourier representation with formula (11) takes time quadratic in N , just like for
the Fourier-Walsh transform over the Boolean cube. Again, there is a faster algorithm, provided N is a
power of two. The strategy is to separately calculate the even and odd coefficients in (10). To be specific,
let’s take N = 8. Then f can be split into even and odd parts:

f(x) =
(
f̂(0) + f̂(2)x2 + f̂(4)x4 + f̂(6)x6

)
+
(
f̂(1)x+ f̂(3)x3 + f̂(5)x5 + f̂(7)x7

)
.

Those parts are the respective polynomial representations of (f(x) + f(−x))/2 and (f(x)− f(−x))/2:

f(x) + f(−x)

2
= f̂(0) + f̂(2)x2 + f̂(4)x4 + f̂(6)x6

f(x)− f(−x)

2
= f̂(1)x+ f̂(3)x3 + f̂(5)x5 + f̂(7)x7

= x(f̂(1) + f̂(3)x2 + f̂(5)x4 + f̂(7)x6).

This suggests setting up the functions

f+(x
2) =

f(x) + f(−x)

2
and f−(x

2) =
f(x)− f(−x)

2x
, (12)

calculating their polynomial expansions, and adding up the resulting polynomials.
As x ranges over the 8-th complex roots of unity e2πij/8, x2 ranges over the 4-th roots e2πij/4. The

functions f+ and f− must therefore have the intended Fourier expansions even modulo 4, namely

f+(y) = f̂(0) + f̂(2)y + f̂(4)y2 + f̂(6)y3, or f̂+(j) = f̂(2j)

f−(y) = f̂(1) + f̂(3)y + f̂(5)y2 + f̂(7)y3, or f̂−(j) = f̂(2j + 1).

Conversely,

f̂(j′) =

{
f̂+(j

′/2), if j′ is even,

f̂−((j
′ − 1)/2), if j′ is odd.

(13)

Algorithm FFT (The Fast Fourier Transform)
Input: N (a power of two) and the list f(1), f(ω), . . . , f(ωN−1).
1 If N = 1, output the value f(1).

2 Set ω = e2πi/N .

3 Calculate the list representations of f+, f− : {1, ω2, ω4, . . . , ω2(N−1)} → C using (12).

4 Calculate f̂+ = FFT (N/2, f+) and f̂− = FFT (N/2, f−).

5 Construct f̂ : {0, . . . , N − 1} → C using (13) and output it.

The FFT algorithm calculates the Fourier transform of f using O(N logN) operations with complex
numbers (additions, subtractions, and scalings).

8

Example Let N = 4. The fourth roots of unity are 1, ω = i, ω2 = −1 and ω3 = −i. Let’s take the
function f over domain {1, i,−1,−i} whose list representation is f(1) = 1, f(i) = 0, f(−1) = −2, f(−i) = 1.
We want to derive the polynomial representation

f(x) = f̂(0) + f̂(1)x+ f̂(2)x2 + f̂(3)x3

= (f̂(0) + f̂(2)x2) + x(f̂(1) + f̂(3)x2)

= f+(x
2) + xf−(x

2), (14)

where f+(y) and f−(y) are functions over the second roots of unity 1 and −1. Their list representations
are calculated in line 3 as

f+(1) =
f(1) + f(−1)

2
= −.5 f−(1) =

f(1)− f(−1)

2
= 1.5

f+(−1) =
f(i) + f(−i)

2
= .5 f−(−1) =

f(i)− f(−i)

2i
= .5i.

Even though f was real-valued, f− is complex-valued.
In step 4 the FFT algorithm recursively calculates the polynomial representations of f+ and f−. As

the domain of these functions is −1, 1 the outcome is the same as for the Fourier-Walsh transform and the
representations are

f+(y) = −.5y, f−(y) = (.75 + .25i) + (.75− .25i) · y.

Finally, in step 5 these representations are plugged into (14) to obtain the polynomial representation of f :

f(x) = −.5x2 + x ·
(
(.75 + .25i) + (.75− .25i) · x2

)
= (.75 + .25i) · x− .5 · x2 + (.75− .25i) · x3,

or f̂(0) = 0, f̂(1) = .75 + .25i, f̂(2) = −.5, f̂(3) = .75− .25i.

5 Variants

The Cosine Transform

In signal processing applications, the function f(ωt) might represent a signal like the amplitude of a sound
sampled at times t = 0, 1, up to N − 1:

signal at time t = f(ωt) = f̂(0) + f̂(1)ωt + · · ·+ f̂(N − 1)ωt(N−1), ω = e2πi/n.

There are two annoyances with this representation. First, even though the signal is real-valued, the
Fourier coefficients and the basis functions are complex. Second, the function f(ωt) is periodic modulo n,
but signals like sound waves are not naturally periodic. It is likely that there will be a discontinuity when
the signal wraps around from t = N − 1 to t = N ≡ 0 (see Figure 1). Discontinuities create unnatural
artifacts in the Fourier expansion.

There is a beautiful trick that eliminates both problems. Before taking its Fourier transform, concate-
nate the signal with its mirror image (see Figure 1). All the Fourier coefficients become real, and all basis
functions reduce to their real part, which is a vector of cosines:

g(ωt) = 2ĝ(0) + 4ĝ(1) · cos
(πt

2N

)
+ 4ĝ(1) · cos

(3πt
2N

)
+ · · ·+ 4ĝ(N − 1) · cos

((2N − 1)πt

2N

)
,

where ω = eπit/2N and t is odd modulo 4N . The index j in ĝ(j) represents the frequency of the corre-
sponding cosine wave (see Figure 2). The low-frequency parts (small js) capture the stable part of the
signal, while the high-frequency ones (large js) capture the oscillating part.

9

https://en.wikipedia.org/wiki/Gibbs_phenomenon
https://en.wikipedia.org/wiki/Gibbs_phenomenon

C

f(x)

07
8 9 10

11

g(x)

31
35 39 43

47

Figure 1: The cosine transform. (a) Evaluations of f(e2πit/12), t = 0, . . . , 11. The signal
exhibits a discontinuity as it wraps from t = 11 to t = 12 ≡ 0. (b) g is obtained by
concatenating f with its mirror image and shifting it so that it is symmetric about the real
axis. The discontinuities are smoothed out and g is symmetric with respect to complex
conjugation (g(x) = g(x)).

f1(x)
f2(x)

Figure 2: The basis functions (a) g1(ω
t) = cos(πt/2N) and (b) g2(ω

t) = cos(2πt/2N).

Two-dimensional transforms

There are Fourier transforms that apply to two and more-dimensional signals like images. They are
constructed by taking the “product” of one-dimensional Fourier transfoms. Suppose we know a Fourier
representation for functions in variable x and we also know a Fourier representation for functions in y.
Then functions in x and y have a unique representation

f(x, y) =
∑
i,j

f̂(i, j)xiyj .

The embeddings of the monomials xi · yj are obtained by taking the outer product of the embeddings of xi

and yj individually: the (s, t)-th entry of the vector representing xiyj is the product of the s-th entry of xi

times the t-th entry of yj . The Fourier coefficients are calculated by a formula analogous to (11): f̂(i, j) is
the average of f(x, y)x−iy−j for x, y ranging over their respective domains.

If x and y range over the N -th and M -th roots of unity, respectively, the Fourier representation of
f(x, y) has the form

signal at position (s, t) = f(e2πis/N , e2πit/M) =
∑
j,k

f̂(j, k)e2πi(sj/N+tk/M)

10

with j ranging from 0 to N − 1 and k ranging from 0 to M − 1. The Fourier coefficient f̂(j, k) is obtained
by averaging f(e2πis/N , e2πit/M)e−2πi(sj/N+tk/M) over s ∈ {0, . . . , N − 1} and t ∈ {0, . . . ,M − 1}.

The Fourier-Walsh transform over the Boolean cube {−1, 1}n is compatible with this construction: It
is the n-th power of the Fourier transform for functions on a single bit {−1, 1}.

Continuous transforms

It is sometimes useful to think of the signal as a continuous function. The amplitude of a sound wave can
in principle be measured at any continuous instant t. Discrete-time approximations that are amenable to
data processing can be obtained by sampling the signal at regularly spaced points. The more frequent
the sampling, the more precise the approximation is. We would expect the same to be true for its Fourier
transform.

Indeed, as N gets larger and larger, the Fourier transform modulo N approaches a continuous Fourier
transform. Its inputs are functions f that take values on the continuous unit circle. Any “reasonable” f
of this type can be expanded as a possibly infinite Fourier series f(ω) =

∑
f̂(j)ωj . Here ω denotes any

point on the complex unit circle and j ranges over all integers. The Fourier coefficient f̂(j) is the average
of f(ω)ω−j with ω sampled uniformly from the unit circle.

Continuous Fourier representations are insightful for understanding properties like sensitivity to contin-
uous noise: By how much does the value of f change typically if its input is perturbed by a small amount?
Just like for functions over the Boolean cube, the higher frequency terms in the Fourier expansion yield
more precise but also more complex approximations of f .

For “standard” mathematical functions f like the pulse and the Gaussian curve the Fourier coefficients
can be calculated exactly via integration, often leading to insightful infinite series representations.

6 Quantum Fourier sampling

A quantum computer is an imaginary computational device. It is believed that if one is ever built, it will
be dramatically more effective than any existing, classical computer for certain types of problems. Much of
this excitement comes from the conjectured ability of quantum computers to “perform” Fourier transforms
exponentially faster than classical computers can.

The Fast Fourier Transform algorithm is already very efficient. It computes a Fourier Transform of a
function with N values in time O(N logN). Intuitively no algorithm can do better than time N because
the least it needs to do it inspect all values of f . Quantum algorithms, just like classical ones, are subject
to this limitation. There is little room for improvement in algorithms for computing the Fourier transform.
(Having said that, the discovery of a linear-time classical or quantum algorithm for the Fourier Transform
would be a tremendous breakthrough!)

There is a different problem related to Fourier transforms called Fourier Sampling. The starting point
is Parseval’s identity (7). Assume f is a function whose average square value is 1. Boolean ±1-valued
functions are like that. Then the squared Fourier coefficients specify a probability distribution over subsets
S of {1, . . . , n}: Set S is picked with probability f̂(S)2. For example, the distribution induced by maj3 is
uniform over the sets {1}, {2}, {3}, and {1, 2, 3}.

Fourier Sampling: Given the list representation of f , output set S with probability f̂(S)2.

We would still expect that to solve Fourier Sampling, a computer would have to at the least inspect all
N values of f . This is indeed the case for classical computers, but no longer true for quantum computers.
The Quantum Fourier Sampling algorithm solves the problem using logN elementary quantum steps!

It may be difficult to understand this exponential speedup without talking about quantum computers in
detail but let me give a try. The state of a classical computer is determined by the contents of its memory.
A computer with n bits of memory must be in one of the 2n possible memory states. For example if n = 2
the possible states are 00, 01, 10, and 11. In contrast, a quantum computer can be in a superposition of

11

these states. Mathematically, a superposition is any vector of unit norm in the 4-dimensional vector space
spanned by the standard basis vectors labeled by the four memory states. These four vectors are usually
denoted by |00⟩, |01⟩, |10⟩, |11⟩ in quantum computing books. In general, a (pure) quantum state of an
n-qubit quantum computer is a superposition of the 2n standard basis states |00 · · · 0⟩, |00 · · · 1⟩, |11 · · · 1⟩.

Given a list representation of f , a quantum computer can create the quantum superposition state
|s⟩ = 1

2(f(++)|00⟩ + f(−+)|10⟩ + f(+−)|01⟩ + f(−−)|11⟩) in one step. This is a valid quantum state,
namely a unit vector, because its length is precisely the squared average of f . In general, the quantum
computer should start in state

|s⟩ = 1√
N

·
∑

x∈{±1}n
f(x)|x in 0/1 representation⟩ (15)

Suppose it could process this state into the Fourier basis state |t⟩ = f̂(∅)|00⟩+ f̂({1})|10⟩+ f̂({2})|01⟩+
f̂({1, 2})|11⟩. Quantum physics tells us that the desired outcome—sample S with probability f̂(S)2—will
be achieved merely by observing the quantum state: A measurement of a quantum state collapses it to a
single (observable) outcome with probability proportional to the square of the coefficient in front of it (the
amplitude).

What remains to do is to instruct the quantum computer to move from state |s⟩ to state |t⟩. By the
product nature of the Fourier transform, this can be achieved by moving every qubit independently. (In
linear algebra language, the n-dimensional Fourier transform is the n-th tensor power of the one-dimensional
Fourier transform.) When n = 1, this means transitioning from the list-of-values basis

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
to the Fourier basis

|+⟩ = 1√
2

[
+1
+1

]
|−⟩ = 1√

2

[
+1
−1

]
.

The instructions of a quantum computer are unitary transformations, namely linear transformations that
preserve unit length. Examples include rotations and flips. The desired change of basis can be effected by
a flip about the x-axis followed by a 45 degree rotation:

|0⟩

|1⟩

x-flip |0⟩

−|1⟩

45◦-rotate

|+⟩

|−⟩

The algebraic specification of the instruction is multiplication by the Walsh-Hadamard matrix

H =
1√
2

[
+1 +1
+1 −1

]
.

Algorithm QFS (Quantum Fourier Sampling)
Input: List representation of f : {±1}n → {±1}.
1 Prepare the quantum start state (15).
2 Apply H to each of the n qubits.
3 Measure the state and report the outcome.

12

A variant of Quantum Fourier Sampling works for the modular Fourier transform. One important
application of it is period finding. Suppose the input function f is periodic modulo some unknown number
q. The period shows in the Fourier transform of f : Most of its “weight” is concentrated around multiples of
N/q, provided q is sufficiently smaller than N . The output of Quantum Fourier Sampling on such functions
is likely to be very close to some multiple of N/q. It is possible to find a good approximation of q itself
from a few such samples.

The most spectacular application of unknown period recovery is factoring. Given a product N = pq of
two primes it is possible to cook up a function that is almost periodic modulo one of the prime factors of
N . Quantum Fourier Sampling then recovers one of the prime factors of N up to some small error. In 1994
Peter Shor showed how the error can be eliminated. His discovery dramatically raised the stakes in quantum
computing because the ability to factor efficiently would break most existing encryption infrastructure.

Despite enormous well-funded efforts since then, a quantum computer is not yet in the cards. Many
scientists believe it will one day be built. This quantum computer will be able to run the precise instructions
required by algorithms like Quantum Fourier Sampling on inputs of arbitrarily large scale.

There are also researchers who conjecture there are fundamental obstacles that forbid the physical
realization of quantum computers. Mathematician Gil Kalai is among the most outspoken ones. His main
argument is that quantum systems are too susceptible to noise to do anything useful. How does he argue
his case? You guessed it—the proof is in the Fourier Transform.

13

https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://gilkalai.wordpress.com/
https://arxiv.org/abs/1409.3093

	The mathematics of the Fourier transform
	Polynomials, complexity, and approximation
	The modular Fourier transform
	The Fast Fourier Transform
	Variants
	Quantum Fourier sampling

