
CSI 4103 / 5138: Great Algorithms Lecture 5
University of Ottawa, Fall 2024

In Lecture 2 we needed the gradient ∇f = (∂f/∂x, ∂f/∂y, ∂f/∂z) for the sum-of-squares loss function

f(x, y, z) = (x− 3y − 3z + 5)2 + (x− 2y − 2z)2 + (x+ y − 5z − 3)2. (1)

in order to run gradient descent. You have probably spent a great deal of time in calculus class doing
calculations like that one. The main message of differential calculus is that no matter how complicated
a function looks, its derivatives can be obtained by following simple rules (sum rule, product rule, chain
rule) and applying a handful of substitutions when the function cannot be simplified further (dex/dx = ex,
d sinx/dx = cosx, etc.)

If we were to program a computer to calculate gradients, how should we go about it? Experience
suggests that a “top-down” approach tends to work. To calculate ∂f/∂x in (1), we would start with the
sum rule to break up the task into three simpler calculations:

∂f

∂x
=

∂

∂x
(x− 3y − 3z + 5)2 +

∂

∂x
(x− 2y − 2z)2 +

∂

∂x
(x+ y − 5z − 3)2. (2)

The first term can be handled like this:

∂

∂x
(x− 3y − 3z + 5)2 = 2(x− 3y − 3z + 5) · ∂

∂x
(x− 3y − 3z + 5) chain rule

= 2(x− 3y − 3z + 5) ·
( ∂

∂x
x+

∂

∂x
(−3y − 3z + 5)

)
sum rule again

= 2(x− 3y − 3z + 5) · (1 + 0) substitutions

= 2(x− 3y − 3z + 5).

The substitutions we used is ∂x/∂x = 1, ∂(expression that does not contain x)/∂x = 0. By a similar chain
of reasoning, ∂(x− 2y− 2z)2/∂x = 2(x− 2y− 2z) and ∂(x+ y− 5z− 3)2/∂x = 2(x+ y− 5z− 3). Plugging
all back into (2) we find

∂f

∂x
= 2(x− 3y − 3z + 5) + 2(x− 2y − 2z) + 2(x+ y − 5z − 3). (3)

Repeating the same logic we also find

∂f

∂y
= −6(x− 3y − 3z + 5) +−4(x− 2y − 2z) + 2(x+ y − 5z − 3),

∂f

∂z
= −6(x− 3y − 3z + 5) +−4(x− 2y − 2z) +−10(x+ y − 5z − 3).

(4)

This algorithm is called forward propagation. The gradient of a complex function is obtained by “propa-
gating” the gradients of its constitutent parts forward.

Algorithm: FP (Forward Propagation for polynomials)
Input: A polynomial f(x, y, . . . , z).
1 If f is a constant, output ∇f = (0, 0, . . . , 0).
2 If f is a variable, say x, output ∇f = (1, 0, . . . , 0).
3 If f is of the form g + h, output FP (g) + FP (h) (sum rule).
4 If f is of the form g × h, output g × FP (h) + h× FP (g) (product rule).

To understand Forward Propagation we need to talk about the representation of functions like (1)
and (2). In Lecture 4 we saw two representations of functions: the list representation and the Fourier
representation. Neither of them tells us how to compute f or its derivatives.

1



1 Circuits

In computer science it is often useful to represent expressions like (1) and (3) not as equations but as
labeled graphs called circuits. The circuit representation of f in (1) is shown in Figure 1.

x y z 1

+ + +

× × ×

+

f

5

−
2 −

5 −3−
3 −3−2

Figure 1: The circuit representation of (1).

In general, a circuit is a directed acyclic graph in which every source vertex is labeled by an input
variable or a constant. Every other vertex—called a gate—is labeled by a basic operation op. You may
think of these basic operations as instructions that can be executed in hardware at unit cost. The basic
operations of an arithmetic circuit are plus and times. Richer circuit models may allow others like divide
and exponentiate.

In this example some of the edges incident to a + gate are labeled by constants describing a scaling
factor. If they bother you, you can think of these factors as “syntactic sugar” for multiplication by a
constant. For example:

x y

+

−
3 is equivalent to

x y −3

×

+

The primary measure of computational complexity for a circuit is its number of gates. If each gate takes
one time unit to evaluate then the size of the circuit is the time it takes to do the computation sequentially.
The circuit in Figure 1 has size 7. A secondary complexity measure is the depth of the circuit. This is
the length of its longest directed path. It is the minimum time it takes to evaluate the circuit in parallel,
assuming each gate takes unit time. The circuit in Figure 1 has depth 3. Here is an example evaluation:

2



1 0 −2 1

+

12

+

5

+

8

×
144

× ×
36

+

200

5

−
2 −

5 −3−
3 −3−2

25

step 1

step 2

step 3

2 Analysis of Forward Propagation

Forward propagation is friendly to circuit representations. Given a circuit computing f as input, it produces
a circuit for its partial derivatives as output. The portion of the circuit that computes ∂f/∂x is shown in
Figure 2.

x y z 1

+ ++ ++ +u ∂u/∂x

×

× ×

+×

× ×

+×

× ×

+
v

∂v/∂x

+ +

f ∂f/∂x

−3
−3

−2
5

−5 −3−2

Figure 2: A portion of circuit produced by Forward Propagation on input (1).

The sub-circuits computing ∂f/∂y and ∂f/∂z have the same structure. The only differences are the
factors on the wires coming out of the 1 node.

The overall size of the circuit for ∇f in Figure 2 is 3+ 3 · 13 = 42. The part of the circuit computing f
has 3 gates and there are 13 additional gates participating in the computation of each partial derivative.
In general, if f(x1, . . . , xn) has circuit size s, Forward Propagation produces a circuit for ∇f of size Θ(ns).

To understand Forward Propagation better I find it helpful to work with a general variant that works
for circuits with arbitrary gates, not only plus and times. To explain it we’ll need a bit of notation. In a
circuit C, each gate computes a function whose inputs are the functions computed at its children. We will
denote by g both the node in the circuit graph and the function computed by it. Let [g] stand for the type
of gate at node g. For example, in the circuit in Figure 1, [f ] is the sum of its three inputs.

Given a gate operation [g] with d inputs and one output, its gradient [∇g] can be viewed as some
other gate operation with (at most) d inputs and d outputs. For instance, if [op](u, v, w) = u + v + w
then [∇g](u, v, w) = (1, 1, 1), i.e., three copies of the constant 1. If [g](u, v, w) = uvw, then [∇g](u, v, w) =
(vw,wu, uv). If [g](u) = expu then [∇g](u) = expu and if [g](u) = 1/u then [∇g](u) = −1/u2.

3



[g]

g

u v w· · ·

computes the function g = [g](u, v, . . . , w).

The partial derivatives of g with respect to the input variables x, y, . . . , z can be computed from the partial
derivatives of u, v, w using the chain rule. For example, if [g] is a multiplication gate with three inputs
then

∂g

∂x
=

∂u

∂x
· (vw) + ∂v

∂x
· (wu) + ∂w

∂x
· (uv).

This is the sum of products between the partial derivatives of the functions represented by the children of
g and the gradient of g evaluated at those children:

∂g

∂x
=

(∂u
∂x

,
∂v

∂x
, . . . ,

∂w

∂x

)
· [∇g](u, v, . . . , w)

=
∂u

∂x
· ∂u[g] +

∂v

∂x
· ∂v[g] + · · ·+ ∂w

∂x
· ∂w[g]

(5)

Here, ∂v[g] stands for the v-th component of the gradient gate [∇g]. This is the partial derivative of the
gate with respect to argument v:

[∇g](u, v, . . . , w) = (∂u[g], ∂v[g], . . . , ∂w[g]).

The chain rule (5) is valid for any gate. The sum and product rules are special cases of it. Forward
Propagation applies it systematically to transform a circuit C into its gradient ∇C.

Algorithm: FP (General Forward Propagation)
Input: A circuit C with n inputs.
1 For every gate g in C with children u, v, . . . , w,
2 Create a new gate ∇g.
3 For every input variable x,
4 Create a new node ∂g/∂x.
5 Connect ∂u/∂x, ∂v/∂x, . . . , ∂w/∂x and ∇g to ∂g/∂x using the chain rule (5).
6 Output the resulting circuit ∇C.

We can apply the chain rule inductively to conclude that Forward Propagation correctly calculates all
the partial derivatives.

Theorem 1. Each gate ∂g/∂x in ∇C computes the partial derivative of g with respect to input variable x.

How large is the resulting circuit? In step 4 each gate g of C is augmented with Θ(n) new gates, one
for every partial derivative. In step 5 each wire (edge) of C contributes an extra times gate to each of these
partial derivatives. If C has s gates and w wires then ∇C will have Θ(n · (s + w)) gates in asymptotic
notation.

Can we do better? As an example, the output of Forward Propagation for C in Figure 1 is quite a bit
larger than C: ∇C has size 42, while C has only size 7. In this example a much smaller circuit for the
gradient of the same function exists. It is shown in Figure 3.

I constructed this circuit “by hand” after inspecting (3) and (4). The partial derivatives share many
common terms that can be reused in the circuit for ∇f . Can this construction procedure be automated
for general f?

4



x

+

∂f/∂x

y

+

∂f/∂y

z

+

∂f/∂z

1

+ + +

−
2 −

5 −3−
3 −3−2

2

2 2
−6

−
4 2

−6 −
4

10

Figure 3: A small circuit for the gradient of (1).

3 Backpropagation

Backpropagation is an ingenious alternative algorithm for calculating the gradient of a circuit C. If C has
n inputs, s nodes, and w wires, Backpropagation produces a circuit for ∇C of size O(n+ s+ w). This is
a big improvement over Forward Propagation for circuits with many inputs.

The backpropagation algorithm calculates partial derivatives by visiting the vertices in reverse topo-
logical order, starting from the output y and ending with the sources x1, . . . , xn. Upon visiting node z,
backpropagation constructs a new gate that calculates the partial derivative ∂y/∂z. To explain what this
means we need to define the partial derivative of one circuit gate y with respect to another gate z.

Definition 2. Assume C is a circuit, y is a gate, and z is a vertex (input or gate). Let (C − z) be the
circuit obtained by removing all edges that point to z from C and turning z into an input (if it is not
already one). Then y computes some function f(z, other inputs) in (C − z). The partial derivative ∂y/∂z
is the derivative of f with respect to z.

Let’s work out an example. Consider the following circuit that computes the function y(x1, x2) =
(x1 + x2 + x1x2)(x1 + x2). The ordering x1, x2, u1, u2, u3, y is a topological sort of its vertices. To its right
are the circuits (C − u3) and (C − u1).

x1

x2

+

u1

×
u2

+

u3

× y

circuit C

x1

x2

+

u1

×
u2

u3

× y

circuit (C − u3)

x1

x2

u1

×
u2

+

u3

× y

circuit (C − u1)

The circuit (C−u3) has inputs x1, x2, u3. The function computed by y in (C−u3) is u1 ·u3 = (x1+x2) ·u3.
The partial derivative ∂y/∂u3 is then ∂(u1 · u3)/∂u3 = u1 = x1 + x2. The last simplification was possible
because u1 does not depend on u3 (as it precedes it in the topological sort).

The circuit (C − u1) has inputs x1, x2, u1. The function computed by y in (C − u1) is u1 · u∗3 =
u1 · (u1 + u2) = u1 · (u1 + x1 + x2). Here u∗3 stands for the function computed by u3 in (C − u1): This is
not the same as the function computed by u3 in C! The input u1 appears twice in this expression, once
explicitly as an argument of the product gate y and once implicitly via u∗3 which itself depends on u1. We
can calculate the partial derivative of this function using the product rule for derivatives:

∂y

∂u1
=

∂(u1 · u∗3)
∂u1

=
∂u1
∂u1

· u∗3 + u1 ·
∂u∗3
∂u1

= 1 · (u1 + u2) + u1 ·
∂(u1 + u2)

∂u1
= (u1 + u2) + u1 = 2u1 + u2.

5



This expresses the desired partial derivative as a small circuit in terms of the gates u1 and u2, which are
already present in C. We can compute ∂y/∂u3 from the existing gates for u1 and u2 and a bit of extra
work (one addition and one multiplication). Is there a general method for this?

Let us first rework the expression for ∂y/∂u1 in a more systematic way. Recall that for a gate g taking
inputs a, b, ∂a[g] is the partial derivative of the gate operation [g] with respect to argument a. For example,
for a product gate [g](a, b) = a · b we have ∂a[g] = b. In general, ∂a[g] is not the same as ∂g/∂a. In the
circuit (C − u1), ∂u1 [y] = ∂(u1u

∗
3)/∂u1 = u∗3, while ∂y/∂u1 = u∗3 + u1. The reason is that u1 affects

y partially through the edge (u1, y) and partially through the path (u1, u3, y). In this example we can
represent y as y = [y]([u3](u1, u2), u1). By the chain rule,

∂y

∂u1
=

∂y

∂u3
· ∂u1 [u3] + ∂u1 [y].

As we already calculated, ∂y/∂u3 = u1. As for the other terms, u3 is a sum gate so ∂u1 [u3] = 1 and u1 is
a product gate so ∂u1 [y] = u3 = u1 + u2. We obtain again ∂y/∂u1 = 2u1 + u2.

In general, suppose we have a gate g whose out-edges point to gates u, v, . . . , w. In the circuit (C − g),
the output y depends on g via the gates u, v, . . . , w (one of which could be y itself), each of which depends
on g. The chain rule now expresses ∂y/∂g as a small circuit that depends on partial derivatives of y with
respect to gates that succeed y in the topological sort and some derivatives of the gates:

∂y

∂g
=

∂y

∂u
· ∂g[u] +

∂y

∂v
· ∂g[v] + · · ·+ ∂y

∂w
· ∂g[w]. (6)

suggesting the following iterative algorithm for partial derivatives.

Algorithm BP (Backpropagation)
Input: A circuit C.
1 Compute a reverse topological sort s of C’s vertices starting with y.
2 For every g in s, construct a subcircuit for ∂y/∂g using the chain rule (6).
3 Output the resulting circuit ∇C.

We demonstrate an execution of backpropagation on our example circuit C. It is useful to visualize
the circuit ∇C by placing the gate ∂y/∂z in a position mirroring the gate z.

Our reverse topological sort s is the ordering y, u3, u2, u1, x2, x1. The first vertex y is isolated in the
circuit (C − y), so ∂y/∂y = 1.

x1

x2

+

u1

×
u2

+

u3

× y

∂y/∂y
1

Next in s is u3. As u3 has a single out-edge going into y, (6) gives ∂y/∂u3 = ∂y/∂y · ∂u3 [y] = ∂y/∂y · u1:

x1

x2

+

u1

×
u2

+

u3

× y

∂y/∂y
1

×
∂y/∂u3

6



Next is u2, which has a single edge pointing to u3. From (6) we get ∂y/∂u2 = ∂y/∂u3 ·∂u2 [u3] = ∂y/∂u3 ·1.

x1

x2

+

u1

×
u2

+

u3

× y

∂y/∂y
1

×
∂y/∂u3

×
∂y/∂u2

Next is u1, which has outgoing edges to u3 and y. Using (6) we get ∂y/∂u1 = ∂y/∂u3 · ∂u1 [u3] + ∂y/∂y ·
∂u1 [y] = ∂y/∂u3 ·1+∂y/∂y ·u3. To keep the picture simple we’ll use ∂y/∂y = 1 and omit the multiplicaton
gates.

x1

x2

+

u1

×
u2

+

u3

× y

∂y/∂y
1

×
∂y/∂u3

×
∂y/∂u2

+

∂y/∂u1

The second to last vertex is x2, with edges pointing to u1 and u2. We have ∂y/∂x2 = ∂y/∂u1 · ∂x2 [u1] +
∂y/∂u2 · ∂x2 [u2] = ∂y/∂u1 + ∂y/∂u2 · x1.

x1

x2

+

u1

×
u2

+

u3

× y

∂y/∂y
1

×
∂y/∂u3

×
∂y/∂u2

+

∂y/∂u1

× + ∂y/∂x2

Finally we construct the gate ∂y/∂x1 using (6) one last time.

x1

x2

+

u1

×
u2

+

u3

× y

∂y/∂y
1

×
∂y/∂u3

×
∂y/∂u2

+

∂y/∂u1

× + ∂y/∂x2

×

+ ∂y/∂x1

At this point it is a good idea to check that this circuit produces correct outputs:

∂y

∂x1
=

∂y

∂u2
· x2 +

∂y

∂u1

=
∂y

∂u3
· x2 +

(
u3 +

∂y

∂u3

)
= u1x2 + (u3 + u1)

= (x1 + x2)x2 + (2u1 + u2)

= (x1 + x2)x2 + (2x1 + 2x2 + x1x2)

= 2x1 + 2x2 + 2x1x2 + x22.

7



You can verify that this is indeed the partial derivative of (x1 + x2 + x1x2)(x1 + x2) with respect to x1.
We can now state the correctness of the backpropagation algorithm. Given a set of basic operations B,

let ∇B be the set of all partial derivatives of all operations in B.

Theorem 3. For any circuit C with designated output y and operations coming from B, the output ∇C
of Backpropagation is a circuit with operation set B ∪ ∇B ∪ {+,×} that contains gates computing ∂y/∂u
for every node u of C. The number of gates in ∇C is at most three times the number of wires plus the
number of nodes in C.

The proof is by strong induction with respect to the ordering s. The gate count comes from formula (6):
Each edge (g, u) in G contributes one gate ∂u[g] in ∇C, one multipilication ∂y/∂u · ∂u[g], and at most one
addition in the chain rule.

Running backpropagation on the sum-of-squares loss C(x) = ∥Ax− b∥2 produces the circuit ∇C(x) =
2AT (Ax− b), provided the product gates in C are replaced with square gates ([g](x) = x2, [∇g](x) = 2x).
As an exercise I recommend trying it on the circuit in Figure 1. The output of backpropagation will be
the circuit in Figure 3.

4 Neural networks

When computers took off in the 1950s and 60s scientists began speculating that they can be used to shed
light on the workings of human intelligence. Their premise was that the mind can be described as a
circuit whose inputs are our sensory perceptions (vision, sound, smell, touch). What are the gates of these
“circuits of the mind”? Neuroscience tells us that the basic blocks of the nervous system, including the
brain, are neural cells, or neurons. These cells take in electrical signals from the sensory system or from
other neurons and amplify or inhibit them depending on their function.

A perceptron is a model of a single neuron. It consists of two types of inputs: n signals x1 up to xn
and an n+ 1 weights w0, w1, . . . , wn. It outputs the value

y = σ(w0 + w1x1 + w2x2 + · · ·+ wnxn),

where σ is a fixed real-valued function called the activation function. One popular choice of activation
function is the logistic function σ(t) = 1/(1 + e−t) which increases from 0 to 1:

t

σ(t) = 1/(1 + e−t)

1

The perceptron can be implemented by a circuit with multiplications, an addition, and a σ gate:

+

w1 x1

×

w2 x2

×

wn xn

×w0

· · ·

σ

For example, a perceptron can be used to decide whether the room is dim or bright based on the readings
of five “noise sensors” x1, x2, x3, x4, x5. Suppose a given sensor outputs 1 if it detects light and −1 if
it doesn’t. The perceptron σ(x1 + x2 + x3 + x4 + x5) would then output an overall brightness estimate
depending on the number k of sensors that output 1:

8



k 0 1 2 3 4 5

σ 0.01 0.05 0.27 0.73 0.95 0.99

Perceptrons are not only useful for modelling natural intelligence but also for endowing machines with the
ability to make decisions from data. Suppose that you want to estimate your chances y of getting an A
in this course. This might depend on a variety of factors such as your homework average x1, your project
grade x2, and the number of hours x3 that you studied each week. Your chances y can then reasonably be
modeled as the output of some perceptron σ(w0 + w1x1 + w2x2 + w3x3). But how should you choose the
weights w0 to w3?

The central dogma of Machine Learning is that you can estimate unknown parameters like w0, w1, w2, w3

from data using a training algorithm. From talking to your friends who took the course last year you
gathered the following data:

name x1 x2 x3 A?

Alice 39 31 12 yes
Bob 45 11 3 no
Charlie 43 25 6 yes

...
...

...
...

Zack 50 40 0 yes

For any given student s in the table, you would expect that the “indicator value” ŷ(s) for the event that
the student received an A should be close to the perceptron’s estimate of this value:

ŷ(s) ≈ σ(w0 + w1x1(s) + w2x2(s) + w3x3(s)).

This approximation will never be exact; the left-hand side is a binary value (0 or 1) while the right hand
side is some real number between 0 and 1. A natural error measure is the square loss

ℓ(s) =
(
ŷ(s)− σ(w0 + w1x1(s) + w2x2(s) + w3x3(s))

)2
.

It is sensible to try to pick the weights w0, w1, w2, w3 so as to miminize the sum f of the individual losses:

f = ℓ(Alice) + ℓ(Bob) + · · ·+ ℓ(Zack)

=
(
1− σ(w0 + 39w1 + 31w2 + 12w3)

)2
+
(
0− σ(w0 + 45w1 + 11w2 + 3w3)

)2
...

+
(
1− σ(w0 + 50w1 + 40w2 + 0w3)

)2
.

Minimizing such expressions can be quite difficult. Gradient Descent is a natural algorithm to try. To run
it we need to calculate the gradient at various inputs. That is where a circuit for the gradient comes in
handy. In this example f is a function of the four model parameters w0, w1, w2, w3 but fairly large size.
Forward Propagation and Backpropagation will produce circuits for ∇f of comparable size. In models with
dozens or more parameters, however, Backpropagation yields orders of magnitude savings in efficiency.

Deep networks

While perceptrons are convenient to work with they are inadequate for more complex data-driven decision
tasks. Suppose you want to know whether an image has a cat in it. The inputs x1, x2, . . . , xn are the
pixels and the output y is supposed to equal 1 if x1, . . . , xn form a cat and 0 if they don’t. A perceptron
would try to base its decision on the value σ(w0 +w1x1 + · · ·+wnxn) for some weights that represent the
importance of different pixels. A weighted sum of pixels cannot take into account high-level features of
vision such as edges between objects, foreground and background layers, and so on.

9



A more expressive model can be obtained by taking multiple perceptrons and organizing them in layers.
By analogy with biological neurons we may expect that neurons closer to the inputs should be adequate for
lower-level perception tasks such as edge-detection, while neurons closer to the output level may perform
more cognitively demanding roles such as object detection and classification (e.g. is it an animal?)

There is a steep price to pay for this complexity: The model now consists of not one but many
perceptrons so the number of unknown weights that needs to be estimated from the training data becomes
very large. Moreover, the circuits representing these models become more complex. For the training to
complete in a reasonable amount of time it is essential to have a systematic and efficient way to evaluate
the gradient of the loss. Backpropagation is indispensable for training such deep networks effectively.

5 Circuit complexity

In calculus class we learn that the derivative of a univariate function f is the limiting value of (f(x+ ϵ)−
f(x))/ϵ as ϵ approaches zero. The definition suggests a third “algorithm” for approximating the gradient:
Estimate each partial derivative ∂f/∂xi by (f(x1, . . . , xi + ϵ, . . . , xn) − f(x1, . . . , xn))/ϵ for some small
ϵ. This algorithm is tricky to implement. First, is unclear how to choose a suitable ϵ. Even if we did,
calculating a ratio of numbers close to zero is notoriously sensitive to precision errors. Small changes in
numerator and denominator cause the output to swing widely.

Nevertheless, suppose you had a magic wand that would make these issues go away. This “dream”
algorithm would still be less efficient than Backpropagation: It would require evaluating f at n+1 different
points, leading to a running time of Θ(ns). It would have the same asymptotic complexity as Forward
Propagation.

What is remarkable about Backpropagation is that it allows evaluation of all n partial derivatives of f
in much less time than it takes to calculate f at n different inputs. We usually expect that the amount of
effort it takes to solve n problems should be n times larger than that for a single problem. Backpropagation
bucks this intuition by virtue of its white-box nature: It ingeniously exploits the circuit representation of
its input f .

This equivalence between the complexity of a function and its gradient has a surprising consequence
regarding the circuit complexity of matrix computations. The goal of circuit complexity is to find the
smallest possible circuit for computing a given function. For example, the second symmetric polynomial

σ2(x1, . . . , xn) =
∑
i<j

xixj = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ xn−1xn

is expressed here as a sum of
(
n
2

)
products. The circuit implementing it has size

(
n
2

)
+ 1 = Θ(n2). Is there

a smaller circuit for it (when n is large)? Indeed there is: We can rewrite σ2 as

σ2(x1, . . . , xn) =
1
2(x1 + · · ·+ xn)

2 − 1
2(x

2
1 + · · ·+ x2n),

which computes the same σ2 in size n+O(1).
Figuring out the smallest possible circuit for a given function is very difficult. An important example

is the Fourier Transform function FT . FT takes as its input a list representation f of size N and outputs
the Fourier representation f̂ also of size N . The Fast Fourier Transform can be implemented as a circuit of
size N logN known as the butterfly. Is this the smallest possible circuit for computing FT? The answer
is not known.

Another important example in linear algebra is the matrix INV erse. A circuit for INV takes the n2

entries of a square matrix X as inputs and produces the n2 entries of the matrix X−1 as outputs. (To allow
inversion the circuit has the gate [g](x) = 1/x at its disposal.) Calculating the matrix inverse is closely
related to solving linear equations. With a bit of work Gaussian Elimination can be turned into a circuit
for INV of similar complexity, namely Θ(n3). Can we do better?

Computer scientist Volker Strassen answered this question affirmatively in 1969. He came up with an
beautiful recursive algorithm for inverting n by n matrices using Θ(nlog 7) ≈ Θ(n2.81) operations. Strassen’s

10

https://en.wikipedia.org/wiki/Butterfly_diagram
https://eudml.org/doc/131927


algorithm was the firing shot for what soon became a competitive sport. The current world record for matrix
inversion is Θ(n2.371552). These algorithms are complicated and not particularly practical. Yet there is no
reason to doubt that further improvements and simplifications are in the cards.

What does this have to do with Backpropagation? To explain its relevance we need to talk about yet
another problem: computing the DET erminant of an n× n matrix X. The determinant of a matrix X is
some complicated polynomial in its n2 entries. How hard is it to calculate?

Gaussian Elimination can also be used to calculate determinants using Θ(n3) operations. This is
not a coincidence: In his 1969 paper Strassen showed that calculating the determinant of a matrix can
be “reduced” to inverting some related matrices. Thus the complexity of calculating the determinant is
asymptotically bounded by the complexity of calculating the inverse. If anyone figures out how to invert
n×n matrices in quadratic time—the holy grail of matrix algorithms—they will have also figured out how
to calculate the determinant in quadratic time.

This does not sound terribly surprising. After all, the determinant of a matrix is just one number, while
its inverse is a whole matrix with n2 numbers. Surely calculating the determinant should be easier than
calculating the inverse. It is not! If there is a size-s circuit for calculating the n × n matrix determinant
out there, there will also be a size-O(s) circuit for the inverse.

The reason for this is Backpropagation. By Cramer’s rule, the entries of the inverse matrix can be
calculated by dividing the determinants of the minors by the determinant of the matrix:

(i, j)-th entry of INV (X) =
DET (X with i-th row and j-th column removed)

DET (X)
.

The determinant of X with the i-th row and j-th column removed is nothing but the partial derivative of
DET (X) with respect to variable Xij :

(i, j)-th entry of INV (X) =
∂DET (X)/∂Xij

DET (X)
.

Collecting all these entries into the matrix INV (X) gives the beautiful formula

INV (X) =
∇DET (X)

DET (X)

so its circuit complexity is at most that of the determinant plus that of the gradient (plus n2 divisions).
Theorem 3 tells us that if DET has a size-s circuit then ∇DET has a size-O(s) circuit, and so does INV .1

1This reasoning assumes all circuit gates have bounded fan-in, namely they take a fixed number of arguments, guaranteeing
that the number of wires is proportional to the number of nodes.

11

https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Cramer%27s_rule

	Circuits
	Analysis of Forward Propagation
	Backpropagation
	Neural networks
	Circuit complexity

