
CSI 4103 / 5138: Great Algorithms Lecture 7
University of Ottawa, Fall 2024

When information is communicated over faulty channels we would expect some errors in transmission.
I may say “four” and you may hear “fault”. We humans have fairly successful strategies for correcting
such errors. If you hear “twelve equals fault times three” you correct the “fault” to a “four” almost
subconsciously.

In the 1950s mathematician Richard Hamming came up with an influential model of unreliable commu-
nication. Alice wants to transmit a message to Bob. Alice encodes her message as a sequence of symbols
called a codeword that travel through a channel. The channel can corrupt some symbols in the codeword;
they are replaced by other symbols. The objective is for Bob to decode Alice’s message from the potentially
corrupted codeword. We’ll assume for now that the codeword symbols are bits (0 or 1).

Here is an example. Alice’s message consists of a single bit. This bit might indicate an instruction (e.g,
0 = buy, 1 = sell). Its meaning is not important. The d-repetition code encodes this bit with d copies of
it. For example, the encodings of 0 and 1 under the 3-repetition code are

Encode(0) = 000 Encode(1) = 111.

If the channel corrupts any one of the symbols, Bob can still recover the message. The majority of the
three symbols will still equal the original message. Bob can recover from up to one error introduced by the
channel by taking the majority of the bits in the corrupted codeword.

Decode(y1y2y3) = maj3(y1, y2, y3).

If the channel corrupts one more codeword symbol, Bob will decode incorrectly. There is in fact no decoding
algorithm that can recover a one-bit message from (up to) two corruptions of a 3-bit codeword. We will
explain why shortly. In general, the d-repetition code can decode a single bit from up to (d− 1)/2 errors.

How should Alice encode longer messages? One possibility is for her to apply a repetition code to every
bit of her message separately. Bob would decode each message block separately. The resulting encoding is
still resilient to a single error. In general, Bob cannot correct more than one error. If two errors occur in
the same block, the corresponding symbol will be decoded incorrectly (see Figure 1).

01 Encode channel
000 111 000 101

Decode 01

01 Encode channel
000 111 000 001

Decode 00

Figure 1: Encoding a 2-bit message with a 3-repetition code. The encoding is resilient to
(a) one error but (b) not to two errors.

In general, we can make any k-bit message resilient to e errors by encoding each bit with a d-repetition
code with d = 2e+1. The resulting codeword will have length n = kd. For example, if we want to tolerate
four errors, the codeword will be nine times longer than the message. Can we do better?

Let’s spell out the requirements. An error-correcting code is a pair of algorithms Encode and Decode.
Encode takes a k-bit message and outputs an n-bit codeword. We say that the code corrects up to e errors
if for every message m and every n-bit string y that differs from Encode(m) in at most e places, Decode(y)
equals m. In the (2e+ 1)-repetition code for k-bit messages, the codeword is n = k(2e+ 1) bits long.
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1 Codes

A few years before Hamming, mathematician Claude Shannon had an important insight about unreliable
communication: The error-correcting capabilities of a code do not depend on how encoding and decoding
are implemented. The only thing that matters is the set C of possible codewords. In the 3-repetition code
applied to a single bit, the codewords are C1 = {000, 111}. The 3-repetition code applied to 2 bits shown
in Figure 1 has four codewords C2 = {000000, 000111, 111000, 111111}. Like Shannon, we will overload
the word “code” to also mean the set of possible codewords. Thus we will call C1 and C2 codes without
worrying for now how encoding and decoding work.

The distance of a code is the smallest possible number of entries in which two (distinct) codewords
differ. C1 has only two codewords and its distance is 3. In C2 some codeword pairs differ in 3 entries while
others differ in 6 entries. Its distance is also 3.

Suppose Alice and Bob are using a code C of distance 4 to correct errors. This code must have two
codewords c and c′ that differ in exactly four symbols, for instance c = 010001000 and c′ = 100001011.
There is always some string x that is “in the middle” of the two, for instance x = 010001011. Bob could
not possibly know whether this x was obtained by corrupting c in the first two positions or by corrupting
c′ in the last two. Therefore Bob cannot possibly correct from two (worst-case) errors using C.

In general, this reasoning tells us that a code of distance d cannot correct d/2 or more errors. The best
we can hope for is (d− 1)/2. This is a negative insight, but a crucial one. It tells us that to come up with
a reasonable code we must at the very least ensure that it has large distance.

The parity check code

Let’s start small. Distance 1 is not very interesting. The messages have distance 1 without any encoding.
At distance 2 something interesting starts to happen: The parity code Pn consisting of all n-bit strings
that XOR to zero has distance 2. For example, P2 = {000, 011, 101, 110}. The code Pn has distance two
because any two strings c ̸= c′ that differ in one position cannot have the same parity, so they are not both
in the code.

The parity code does not have any error-correction capabilities—its distance is just too small—but
it can detect a single error. If a single bit was flipped by the channel Bob would know that an error in
communication occurred by calculating the parity of all its received bits, hence the name parity check code.

The parity check code can detect a single error in communication. But so can a 2-repetition code.
What is the advantage in using the parity check code?

You may think that it is impossible to answer this question without explaining how the party check code
“works”. But you would be wrong to think that. For the purposes of understanding the error-correction
capabilities of a code, it does not matter at all how the messages are encoded. It only matters how many
messages there are. The number of messages is nothing but the size |C| of the set of codewords. For
example, P2 encodes four possible messages, which we can identify with the bit strings 00, 01, 10, and 11.
Alice and Bob can agree in advance which codeword represents which message.

In general, a code of size 2k encodes k-bit messages. The code Pn has size 2n−1 as it contains exactly
half of all 2n possible n-bit strings. Therefore k-bit messages are encoded by n = (k + 1)-bit codewords.
In contrast, the 2-repetition code uses up 2k codeword bits.

The rate of a code is the ratio k/n between the message length and the codeword length. It measures
the (fractional) number of message symbols represented by each codeword symbol. The 2-repetition code
has rate 1/2, while the parity check code has rate 1 − 1/k. When k is large the latter is almost twice as
efficient.

Once we have figured out the rate and distance of a code we can try to figure out how the encoding
actually works. In the parity check code we can take the first k bits of the encoding to be a copy of the
message m. The last bit then equals the parity of the bits of m = m1 · · ·mk:

Encode(m) = (m1, . . . ,mk,m1 + · · ·+mk).
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The sum is modulo 2. This is an example of a systematic code: The codeword is a copy of the message
followed by some redundant bits that assist error detection or correction.

Hamming’s [7, 4, 3] code

Hamming discovered an interesting code H for 4-bit messages:

Encode(m) = (m1, m2, m3, m4, m1 +m2 +m4, m1 +m3 +m4, m2 +m3 +m4).

This code has distance 3. Its distance can be at most 3 because the encodings of 0000 and 1000 differ in
three bits (bits 1, 4, 5). It can be checked by case analysis or computer search that there are no codewords
at distance 1 or 2. You will figure this out in the homework.

We know that a code of distance 3 cannot recover from two or more errors. Can H decode from one
error?

Every code of distance 3 can tolerate up to one error. The decoding algorithm is simple: Round the
possibly corrupted codeword y to the nearest true codeword and output the message that it encodes. For
example, suppose Bob receives 0111110. The nearest codeword to it is 0110110. This is the encoding of
0110, so Bob would decode to 0110.

To understand why this algorithm works we have to reason by contradiction. Suppose Alice encoded
message m into c. We know that Bob’s received word y differs from some c in at most one bit. Could
Bob have decoded y to some other c′? Bob picks the closest codeword to y so c′ cannot differ from y by
more than one bit. Therefore c and c′ can differ in at most two bits. But no two codewords differ in more
than two bits unless they are the same codeword.

The same argument tells us that if C has distance d then correcting up to (d−1)/2 errors is in principle
possible.

Proposition 1. If C has distance d then there exist algorithms Encode and Decode such that for every
message m and for every y that differs from Encode(m) in at most (d− 1)/2 bits, Decode(y) equals m.

Decoding to the nearest codeword always works, but may not particularly practical when the code is
large. Hamming’s [7, 4, 3] code, for example, has 24 = 16 codewords. For each of them, there are 8 possibly
corrupted codewords that can arise from at most 1 bit flip. To implement nearest codeword decoding we
might need to write down the map from each of these 16 · 8 = 128 candidates to its nearest codeword and
search for a match:

0000000 → 0000

0000001 → 0000
...

0111110 → 0110
...

1111111 → 1111.

In general, the list of nearest candidate codewords for n-bit codewords, k-bit messages, and e errors has
size 2k

(
n
≤e

)
, where

(
n
≤e

)
is the number of strings with at most e ones (see Figure 2 (a)). For example, if

k = 10, n = 20, and e = 5, the list has more than twenty million items. Isn’t there a better way to decode?
For the Hamming [7, 4, 3] code, there is.
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Algorithm Decode for the Hamming [7, 4, 3] code
Input: y ∈ {0, 1}7 with at most one error
1 Calculate p1 = y1 + y2 + y4 + y5, p2 = y1 + y3 + y4 + y6, p3 = y2 + y3 + y4 + y7.
2 Convert p1p2p3 into a number i using the rule:

000 → 0, 110 → 1, 101 → 2, 011 → 3, 111 → 4, 100 → 5, 010 → 6, 001 → 7.
3 If i ̸= 0, flip the i-th bit of y.
4 Output the first four bits of y.

For example, if y = 0111110, p1p2p3 will equal 111, i will be 4. After flipping the fourth bit y becomes
0110110, which is the encoding of 0110. This decoding rule may look magical but there is method in the
madness. You will explore it in the homework.

Figure 2: Illustration of a code. The white points represent codewords and the black points
represent the remaining n-bit strings. (a) In a code of distance 3, all strings that differ from
a codeword by at most one bit are distinct. (b) In a 1-perfect code there are no other strings.

Hamming’s [7, 4, 3] code has distance 3. Can we encode 5-bit messages into 7-bit string and preserve
the distance? We can’t. In Hamming’s [7, 4, 3] code all the strings that differ from a codeword in at most
one bit are distinct. We already counted that there are 128 such strings. But 128 = 27 so they must
account for all strings in {0, 1}7. If we try to pack in even one more codeword the distance will be ruined.

This code is an example of a 1-perfect code (see Figure 2 (b)). Codes of distance 2e+1 in which every
string differs from a codeword in at most e bits are called e-perfect.

2 Reed-Solomon codes

[7, 4, 3] codes exist but [7, 5, 3] codes do not. Coding theorists want to know which values of n (codeword
length), k (message length), and d (distance) admit [n, k, d] codes and which do not. This is a difficult
question.

So far we have assumed that the codeword symbols are the bits 0 and 1. This turns out to be the main
source of difficulty. Let’s relax this requirement and allow the symbols to come from some larger alphabet.
A code over a size-n alphabet is a set of n-symbol strings each of which takes one of n possible values. We
will represent these by the numbers 0 to n− 1.

For example, C1 = {000, 111, 222} is the 3-repetition code over alphabet size 3 (trits). It encodes a mes-
sage consisting of a single trit. Its distance is 3. The code C2 = {000, 012, 021, 102, 111, 120, 201, 210, 222}
encodes two trits and has distance 2.

Our alphabets of interest are the finite fields Fn. Like last time, if n is a prime number, the alphabet
symbols can be manipulated using arithmetic modulo n. C1 and C2 are instances of a very special family
of codes.

Definition 2. The codewords of the Reed-Solomon code RSk,n are the evaluations of all degree-(k − 1)
polynomials p at the elements of Fn in order.
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When n is prime, the codeword is the sequence (p(0), p(1), . . . , p(n− 1)). We will assume that n ≥ k.
C1 is the Reed-Solomon code RS1,3. The degree-0 polynomials in F3 are the three constants 0, 1, and

2. When evaluated at inputs 0, 1, and 2 they produce the sequences 000, 111, and 222. C2 is nothing but
RS2,3. The polynomials p are now linear functions p(x) = m0+m1x. The coefficient pair (m0,m1) can be
chosen in nine possible ways specifying nine polynomials and nine codewords. For example, when m0 = 1
and m1 = 2 the polynomial is p(x) = 1 + 2x and its corresponding codeword is (p(0), p(1), p(2)) = 102.

In general, RSk,n contains nk codewords because a degree-(k − 1) polynomial has k coefficients and
there are n choices for each coefficient. So it can encode a message consisting of k symbols. This counting
argument suggests a natural implementation of the encoding: View the message symbols as coefficients of
a polynomial and the codeword symbols as evaluations of the same polynomial.

Algorithm Encode for Reed-Solomon codes
Input: m0, . . . ,mk−1 in Fn.
1 Construct the polynomial p(x) = m0 +m1x+ · · ·+mk−1x

k−1.
2 Output the sequence of evaluations (p(0), p(1), . . . , p(n− 1)).

How about its distance? As the codeword consists of all evaluations, the distance is the smallest number
of places in which any two degree-(k − 1) polynomials p and p′ differ. We saw in the last lecture that p
and p′ can match in at most k − 1 places, so they must differ in the remaining n − k + 1 places. So the
distance is at least n− k + 1. To summarize,

The Reed-Solomon code RSk,n has message length k, codeword length n, and distance n−k+1.

We only argued that the distance is at least n − k + 1. Can it be greater than that? Not for the
Reed-Solomon code or not for any other code!

Singleton bound. There is no code of message length k, codeword length n, and distance greater than
n− k + 1.

Proof. Look at the first k − 1 symbols of the codeword. As the message is k symbols long there must be
two messages m and m′ whose encodings c and c′ share the same k − 1 first symbols. The codewords c
and c′ can differ in at most the last n− (k − 1) = n− k + 1 symbols. The distance cannot be larger than
that.

Reed-Solomon is optimality codified. These codes have the largest possible distance for any message
length k and any codeword length n. The encoding algorithm is fairly simple. How about decoding?

3 Decoding Reed-Solomon codes

An erasure is a more benign type of corruption than an error. It is a missing symbol from the codeword
at a known position. Let’s take the Reed-Solomon code RS3,5 as an example. 22434 is a codeword of this
code. Erasures at positions 0 and 2 (we start the count at zero to be consistent with the evaluation points)
results in ?2?34. Can the codeword and message be recovered?

Here is how. The corrupted codeword arose from evaluating some unknown polynomial of degree
3− 1 = 2 modulo 5. This polynomial has the form p(x) = m0 +m1x+m2x

2. Even though p(0) and p(2)
were erased, the values p(1) = 2, p(3) = 3 and p(4) = 4 provide enough equations to solve for the message
(m0,m1,m2):

m0 +m1 +m2 = 2

m0 +m1 · 3 +m2 · 32 = 3

m0 +m1 · 4 +m2 · 42 = 4.
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Using Gaussian Elimination modulo 5 we recover the unique solution m0 = 1,m1 = 4,m2 = 2. Decoding
from erasures for Reed-Solomon code is the same as reconstructing in Shamir’s sharing scheme. A degree-
(k − 1) polynomial can be reconstructed from any k evaluations, so this procedure can recover from up to
n− k erasures. This is best possible because RSk,n has distance n− k + 1.

How about errors? Before we go there I’ll describe another algorithm to recover erased symbols. This
algorithm is slower and less intuitive but will point us in the right direction for handling errors.

In the corrupted codeword ?2?34, the values p(0) and p(2) have been erased. Instead of ignoring them,
we will fix them to zero by changing the polynomial. Here is how. The polynomial e(x) = x(x − 2)
evaluates to zero on inputs 0 and 2. Even though p(0) and p(2) are unknown, Bob can evaluate the
polynomial (pe)(x) = p(x)e(x) everywhere. Its values are 03042.

As p has degree at most 2 and e has degree 2, their product pe has degree at most 4. We have five
evaluations of pe. We can solve for its coefficients using Gaussian Elimination. The unique solution is
(pe)(x) = x4+2x3+4x2+x. We can now recover p by dividing (pe)(x) and e(x) as polynomials (over F5):

p(x) =
(pe)(x)

e(x)
=

x4 + 2x3 + 4x2 + x

x(x− 2)
= x2 + 4x+ 2.

The message symbols are 142 as before.
The main advantage of this more complicated procedure is that we can extend it to correct errors.

The resulting error-correction algoritm was patented by Berlekamp and Welch in 1983. Let’s illustrate on
an example. The code RS3,5 has distance 3 so it can correct up to one error. Suppose Bob receives the
corrupted codeword y0y1y2y3y4 = 11444. He is promised that there is at most one error, but he doesn’t
know where this error is.

The first insight of Berlekamp and Welch is that assuming the error occurs at position a, the value
p(x)(x − a) must match the codeword symbol yx multiplied by (x − a). If x ̸= a then the symbol yx was
not corrupted so p(x) must equal yx. Multiplication by x−a does not change this. If x equals a both sides
are zero. We can therefore hope to solve for the message by expanding p as p(x) = m0 +m1x+m2x

2 and
setting up p(x)(x− a) = yx(x− a) as a system of equations in unknowns a, m0, m1, and m2:

m0 · (−a) = 1 · (−a)

(m0 +m1 +m2) · (1− a) = 1 · (1− a)

...

(m0 +m1 · 4 +m2 · 42) · (4− a) = 4 · (4− a).

The problem with this system is that it is not linear. The second idea of Berlekamp and Welch is to linearize
it. Instead of seeking p(x) and e(x) = x − a separately, they solve for their product (pe)(x) = p(x)e(x).
This polynomial has degree 3 so it has the form (pe)(x) = b0 + b1x+ b2x

2 + b3x
3. The equations become

linear:

b0 = 1 · (−a)

b0 + b1 + b2 + b3 = 1 · (1− a)

b0 + b1 · 2 + b2 · 22 + b3 · 23 = 4 · (2− a)

b0 + b1 · 3 + b2 · 32 + b3 · 33 = 4 · (3− a)

b0 + b1 · 4 + b2 · 42 + b3 · 43 = 4 · (4− a).

There are five equations in the five unknowns b0, b1, b2, b3 and a, setting the ground for Gaussian elimination
modulo 5. It reveals the unique solution b0 = 2, b1 = 3, b2 = 4, b3 = 4, a = 3. Thus (pe)(x) = 2 + 3x +
4x2 + 4x3 and e(x) = x− 3. To find out p all that remains is to divide the two

p(x) =
(pe)(x)

e(x)
=

2 + 3x+ 4x2 + 4x3

x− 3
= 4x2 + x+ 1.
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The message is 411. Its encoding is 11404. There was indeed one error in the corrupted codeword.

Algorithm Decode (Berlekamp-Welch decoding for the Reed-Solomon code)
Input: A possibly corrupted codeword y = (y0, y1, . . . yn−1) of RSk,n with at most c errors.
1 Set up the error-locator polynomial e(x) = a0 + a1x+ · · ·+ ac−1x

c−1 + xc

with unknowns a0, . . . , ac−1.
2 Set up the product polynomial (pe)(x) = b0 + b1x+ · · ·+ bk+c−1x

k+c−1

with unknowns b0, . . . , bk+c−1.
3 Solve the system of n equations (pe)(i) = yie(i), one for each i ∈ Fn

for a0, . . . , ac−1 and b0, . . . , bk+c−1.
4 Divide the polynomials (pe)(x) and e(x) to obtain p(x).
5 Output the coefficients of p.

Theorem 3. Assuming c ≤ (n − k)/2, Decode outputs the unique message m whose codeword is within
distance c of y.

As the distance of the code is n−k+1, the Berlekamp-Welch algorithm decodes up to half the distance,
which is best possible.

Proof. The system (pe)(i) = yie(i), i ∈ Fn is constructed so it has at least one solution. In this solution
p(x) is the polynomial m0 +m1x + · · · +mk−1x

k−1, e(x) is the product of terms (x − a) where a ranges
over the (at most c) corrupted positions, and pe is the product of p and e.

The reason the theorem needs a proof is that there may be other solutions. The algorithm would not
know which to pick in step 3, so we need to argue they all lead to the same outcome p. Suppose there is
some other solution (pe)′, e′ whose ratio is different. Then (pe)/e and (pe)′/e′ are not the same polynomial,
so (pe)e′ and (pe)′e are not the same either. But for all n inputs i, (pe)(i)e′(i) = yie(i)e

′(i) = (pe)′(i)e(i).
They are both polynomials of degree at most k + 2c − 1 and they match at n inputs. As c is at most
(n − k)/2, k − 2c − 1 is less than n so their difference must equal the zero polynomial. So (pe)/e and
(pe)′/e′ must both equal p.

There are many decoding algorithms for the Reed-Solomon code and for other error-correcting codes,
but few of them can decode all the way up to half the distance. Berlekamp-Welch stands out in this
respect. The algorithm is however expensive to run as it entails setting up and solving a modular system
with k + 2c unknowns and at least that many equations. Its complexity that is at least cubic in k + 2c.
A related weakness is that its running time does not scale with the actual number of corruptions in the
input string, but only with the preset upper bound c on this number. It is desirable that codewords with
few errors decode faster, even though the code is designed to tolerate many of them in the worst case.

Berlekamp-Welch is a Great Algorithm not because it is practical but because it clarifies our thinking
about codes. It demonstrates that in principle Reed-Solomon codes can be decoded reasonably efficiently,
no ifs and buts. This distinguishes them from a host of other candidates. Once an engineer knows that a
task is feasible is principle, they can look for better algorithms that take into account additional information
such as the likelihood of different error patterns. There is indeed an almost endless variety of algorithms
for decoding Reed-Solomon and related codes.

4 The long reach of coding theory

Errors in communication are complicated. Some errors could come in bursts like when a cloud obstructs
a receiver from a satellite. Others could be random like when some piece of equipment malfunctions.
The founders of coding theory consciously decided to ignore these complexities in favor of mathematically
simple models of communication. This turned out to be a prescient choice. Today error-correcting codes
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have scientific impact well beyond fixing errors in communication. Their modern applications could not
have been imagined in the 1950s.

Verifying computations In the early 1990s computer scientists were studying efficient verification of
long computations. Suppose client Alice has paid the powerful server Bob to do a computation on her
behalf. Bob returns an answer. How can the Alice be sure that the answer is the actual outcome of the
computation and not some made up number? Complexity theorists and cryptographers have invented
ingenious algorithms for verifying that a computation was done correctly in much less time than it takes to
perform it. Computations that take T steps to perform can be verified in time logarithmic in T . Succinct
verification is by now a sprawling topic with many variants and optimizations. It is all enabled by error
correction.

The execution of a computer program that uses T steps to complete can be represented as a “message”
with T symbols. The t-th symbol represents the state of the computation at step t. The computation
was executed correctly if the t-th and (t + 1)-st symbol of this message are consistent with the program
execution at all steps t < T . Bob can report this message and Alice can try to gain confidence by checking
consistency for some random values of t. However, even a single inconsistency can completely derail the
computation. Such a failure is unlikely to be detected by a a few random spot checks.

The idea of all verification algorithms is to encode the message representing the execution with a suitable
error-correcting code. If a malicious Bob tries to “ruin” the computation by corrupting the corresponding
codeword then one of two things must happen. Perhaps all the corruptions produced another codeword.
This can only happen if the number of corruptions is at least as large as the distance of the code. Provided
the distance is sufficiently high, a corruption can then be detected by a random spot check. Otherwise,
Bob must have produced something that does not belong to the code. A type of code called a locally
testable code admits an algorithm that can (approximately) test membership in the code much faster than
it takes to decode or even read the candidate codeword. Computations encoded by locally testable codes
are immune to such atttacks.

Locally testable codes were invented by computer scientists for the purpose of analyzing computation.
They later found cryptographic applications in shared environments like the blockchain where the state
of long computations needs to be agreed upon quickly by many participants. The codes used in these
applications have much worse rate than the Reed-Solomon code. For a while it appeared that high rate,
large distance, and local testability are simultaneously incompatible requirements. A few years ago two
groups of mathematicians and computer scientists showed that we can have it all.

Random linear codes and cryptography Reed-Solomon codes are optimal in many ways. The price
to pay for this optimality is that they work only over large alphabets. How about codes over bits? Already
in the 1950s Gilbert and Varshamov independently proposed random linear codes. k random strings
consisting of n bits are independently picked as “basis” codewords. The choice of these basis codewords
c1, . . . , ck determines the code.

The encoding of a message m is then the sum modulo 2 of the codewords corresponding to the 1-bits of
m: Encode(m) =

∑
mici (mod 2). Gilbert and Varshamov showed that for large n, the rate of this code

approaches 1 − H(k/n) with high probability. Here H(p) = −p log2 p − (1 − p) log2(1 − p) is the binary
entropy function. More than seventy years later there are no known constructions that outperform this
rate. Yet it is not known if the Gilbert-Varshamov construction is the best possible.

Random linear codes have a simple encoding algorithm. How about decoding? Decoding from erasures
amounts to solving a system of linear equations in modular arithmetic, just like for the Reed-Solomon
code. No comparably efficient algorithm is known to decode from errors. It is commonly believed that this
is a difficult problem. This apparent drawback of random linear codes turns out to be an essential feature
in the context of data encryption.
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Quantum error-correction One of Hamming’s motivations for studying error correction was data
integrity. We expect that data should be robust to computer storage failures. Error-correcting codes
provide a mechanism for protection against such failures.

Modern computer technology is sufficiently reliable that hardware failures almost never happen. Error-
correcting standalone computations is rarely necessary (though codes are still used to mitigate data storage
faults). However, it is widely believed that error-correction will be indispensable for the operation of
quantum computers.

Quantum states cannot survive on their own for more than a few instants. To prevent loss of information
it is essential that the state of a quantum computer be suitably encoded. Physicists and computer scientists
have devised analogs of error-correcting codes for quantum information. Designing hardware that carries
out this error correction reliably is perhaps the greatest challenge for quantum computing.
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