1. You apply gradient descent to the following (inconsistent) univarate linear system:

$$x = 0$$
$$x = 1$$

(a) Write the sum-of-squares loss f. For which value of x^* is $f(x^*)$ minimized?

Solution: The sum-of-squares loss is $f(x) = x^2 + (x-1)^2$. Its gradient is f'(x) = 2x + 2(x-1) = 2(2x-1). The loss is minimized when the gradient is zero, namely at $x^* = 1/2$.

(b) Let x_t be the state after t steps of gradient descent with rate ρ . What is $(x_t - x^*)/(x_{t-1} - x^*)$?

Solution: It equals $1 - 4\rho$. The state evolution equation is $x_t = x_{t-1} - \rho f'(x_{t-1}) = x_{t-1} - 2\rho(2x_{t-1} - 1)$. Therefore $x_t - 1/2 = (x_{t-1} - 1/2) - 2\rho(2x_{t-1} - 1) = (1 - 4\rho)(x_{t-1} - 1/2)$.

(c) Assuming $x_0 = 0$ and $\rho = 1/8$, what is x_{20} ?

Solution: By part (b),

$$x_{20} - 1/2 = (1 - 4\rho)^{20}(x_0 - 1/2) = (1/2)^{20}(-1/2) = -(1/2)^{21}.$$

2. You apply subspace iteration on the matrix

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$

Your initial state is the standard basis $\mathbf{x}_1 = (1,0,0)$, $\mathbf{x}_2 = (0,1,0)$, $\mathbf{x}_3 = (0,0,1)$.

(a) Ignoring \mathbf{x}_3 for now, show how \mathbf{x}_1 and \mathbf{x}_2 evolve in the first three rounds of subspace iteration.

Solution: Round 1: $A\mathbf{x}_1$ and $A\mathbf{x}_2$ are the first two columns of A. They are already orthogonal but not of unit norm. After orthogonalization the state is $\mathbf{x}_1 = (0, 1/\sqrt{5}, 2/\sqrt{5})$ and $\mathbf{x}_2 = (1, 0, 0)$.

Round 2: $A\mathbf{x}_1$ now becomes $(\sqrt{5}, 0, 0)$ and $A\mathbf{x}_2$ becomes (0, 1, 2). After orthogonalization $\mathbf{x}_1 = (1, 0, 0)$ and $\mathbf{x}_2 = (0, 1/\sqrt{5}, 2/\sqrt{5})$. They switch places from round 2.

Round 3: They now switch places again, so the outcome is the same as after round 1. The state keeps iterating between $\mathbf{x}_1 = (0, 1/\sqrt{5}, 2/\sqrt{5})$, $\mathbf{x}_2 = (1, 0, 0)$ and $\mathbf{x}_1 = (1, 0, 0)$, $\mathbf{x}_2 = (0, 1/\sqrt{5}, 2/\sqrt{5})$.

(b) Use part (b) to find two of the three eigenvalues of A. Explain your reasoning.

Solution: The two eigenvalues are $\sqrt{5}$ and $-\sqrt{5}$. As $A\mathbf{x}_1 = \sqrt{5}\mathbf{x}_2$ and $A\mathbf{x}_2 = \sqrt{5}\mathbf{x}_1$, $\mathbf{x}_1 + \mathbf{x}_2$ is an eigenvector with eigenvalue $\sqrt{5}$ and $\mathbf{x}_1 - \mathbf{x}_2$ is an eigenvector with eigenvalue $-\sqrt{5}$.

(c) Prove that if, at any point during power iteration, $A\mathbf{x}_i$ and $A\mathbf{x}_j$ become linearly dependent (for some $i \neq j$), zero must be an eigenvalue of A.

Solution: if $A\mathbf{x}_i = cA\mathbf{x}_j$ then $A(\mathbf{x}_i - c\mathbf{x}_j)$ must be zero. But \mathbf{x}_i and \mathbf{x}_j are orthogonal so $\mathbf{x}_i - c\mathbf{x}_j$ is a nonzero eigenvector with eigenvalue zero.

(d) Use part (c) to find the remaining eigenvalue of A. (**Hint:** What happens to \mathbf{x}_3 ?)

Solution: In round 1 already $A\mathbf{x}_2$ and $A\mathbf{x}_3$ are linearly dependent as they are both multiples of (0,1,2). By part (c) zero is an eigenvalue of A.

3. Apply the modular Fast Fourier transform to calculate the polynomial representation of

(a) Calculate the list representations of f^+ and f^- , where $f(x) = f^+(x^2) + x f^-(x^2)$.

Solution: $f^+(x^2) = (f(x) + f(-x))/2$ has list representation f(1) = 1, f(-1) = 2. $f^-(x^2) = (f(x) - f(-x))/2x$ has list representation f(1) = -1, f(-1) = i.

(b) Calculate the polynomial representations of f^+ and f^- over domain $\{-1, +1\}$.

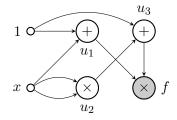
Solution: g over domain -1, 1 has polynomial representation $g(y) = \frac{1}{2}(g(1) + g(-1)) + \frac{1}{2}(g(1) - g(-1)) \cdot y$. Applying this formula we get $f^+(y) = \frac{3}{2} - \frac{1}{2} \cdot y$ and $f^-(y) = (-\frac{1}{2} + \frac{1}{2}i) + (-\frac{1}{2} - \frac{1}{2}i) \cdot y$.

(c) Calculate the polynomial representation of f.

Solution: $f(x) = f^+(x^2) + xf^-(x^2) = \frac{3}{2} + \left(-\frac{1}{2} + \frac{1}{2}i\right) \cdot x - \frac{1}{2} \cdot x^2 + \left(-\frac{1}{2} - \frac{1}{2}i\right) \cdot x^3$.

- 4. Let $f(x) = 1 + x + x^2 + x^3$.
 - (a) Draw a circuit for f with at most two plus gates and two times gates.

Solution: If we do not restrict the fan-in, i.e. the number of incoming wires into each gate, there are many possible implementations. Here is an implementation with fan-in two that corresponds to the formula $(1+x)(1+x^2)$.



(b) Draw the circuit obtained by applying backpropagation to part (a). Explain any simplifications you apply.

Solution: Applying backpropagation in reverse topological order f, u_3, u_2, u_1, x we find df/df = 1 and

$$\frac{df}{du_3} = \frac{df}{df} \cdot \partial_{u_3}[f] = \frac{df}{df} \cdot u_1 \quad \text{simplifies to } u_1$$

$$\frac{df}{du_2} = \frac{df}{du_3} \cdot \partial_{u_2}[u_3] = \frac{df}{du_3} \cdot 1 \quad \text{simplifies to } u_1$$

$$\frac{df}{du_1} = \frac{df}{df} \cdot \partial_{u_1}[f] = \frac{df}{df} \cdot u_3 \quad \text{simplifies to } u_3$$

$$\frac{df}{dx} = \frac{df}{du_1} \cdot \partial_x[u_1] + \frac{df}{du_2} \cdot \partial_x[u_2] + \frac{df}{du_2} \cdot \partial_x[u_2] = \frac{df}{du_1} \cdot 1 + \frac{df}{du_2} \cdot x + \frac{df}{du_2} \cdot x$$

which finally simplifies to $u_3 + u_1 \cdot 2x$. The (simplified) circuit is

