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University of Ottawa, Fall 2025

1. You apply gradient descent to the following (inconsistent) univarate linear system:

x = 0

x = 1

(a) Write the sum-of-squares loss f . For which value of x⋆ is f(x⋆) minimized?

Solution: The sum-of-squares loss is f(x) = x2+(x−1)2. Its gradient is f ′(x) = 2x+2(x−1) = 2(2x−1).
The loss is minimized when the gradient is zero, namely at x⋆ = 1/2.

(b) Let xt be the state after t steps of gradient descent with rate ρ. What is (xt − x⋆)/(xt−1 − x⋆)?

Solution: It equals 1− 4ρ. The state evolution equation is xt = xt−1 − ρf ′(xt−1) = xt−1 − 2ρ(2xt−1 − 1).
Therefore xt − 1/2 = (xt−1 − 1/2)− 2ρ(2xt−1 − 1) = (1− 4ρ)(xt−1 − 1/2).

(c) Assuming x0 = 0 and ρ = 1/8, what is x20?

Solution: By part (b),

x20 − 1/2 = (1− 4ρ)20(x0 − 1/2) = (1/2)20(−1/2) = −(1/2)21.

2. You apply subspace iteration on the matrix

A =

0 1 2
1 0 0
2 0 0


Your initial state is the standard basis x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1).

(a) Ignoring x3 for now, show how x1 and x2 evolve in the first three rounds of subspace iteration.

Solution: Round 1: Ax1 and Ax2 are the first two columns of A. They are already orthogonal but not of
unit norm. After orthogonalization the state is x1 = (0, 1/

√
5, 2/

√
5) and x2 = (1, 0, 0).

Round 2: Ax1 now becomes (
√
5, 0, 0) and Ax2 becomes (0, 1, 2). After orthogonalization x1 = (1, 0, 0) and

x2 = (0, 1/
√
5, 2/

√
5). They switch places from round 2.

Round 3: They now switch places again, so the outcome is the same as after round 1. The state keeps
iterating between x1 = (0, 1/

√
5, 2/

√
5), x2 = (1, 0, 0) and x1 = (1, 0, 0), x2 = (0, 1/

√
5, 2/

√
5).

(b) Use part (b) to find two of the three eigenvalues of A. Explain your reasoning.

Solution: The two eigenvalues are
√
5 and −

√
5. As Ax1 =

√
5x2 and Ax2 =

√
5x1, x1 + x2 is an

eigenvector with eigenvalue
√
5 and x1 − x2 is an eigenvector with eigenvalue −

√
5.

(c) Prove that if, at any point during power iteration, Axi and Axj become linearly dependent (for some i ̸= j),
zero must be an eigenvalue of A.

Solution: if Axi = cAxj then A(xi − cxj) must be zero. But xi and xj are orthogonal so xi − cxj is a
nonzero eigenvector with eigenvalue zero.

(d) Use part (c) to find the remaining eigenvalue of A. (Hint: What happens to x3?)

Solution: In round 1 already Ax2 and Ax3 are linearly dependent as they are both multiples of (0, 1, 2).
By part (c) zero is an eigenvalue of A.

3. Apply the modular Fast Fourier transform to calculate the polynomial representation of

x 1 i −1 −i

f(x) 0 1 2 3



(a) Calculate the list representations of f+ and f−, where f(x) = f+(x2) + xf−(x2).

Solution: f+(x2) = (f(x) + f(−x))/2 has list representation f(1) = 1, f(−1) = 2. f−(x2) = (f(x) −
f(−x))/2x has list representation f(1) = −1, f(−1) = i.

(b) Calculate the polynomial representations of f+ and f− over domain {−1,+1}.

Solution: g over domain −1, 1 has polynomial representation g(y) = 1
2(g(1)+ g(−1))+ 1

2(g(1)− g(−1)) ·y.
Applying this formula we get f+(y) = 3

2 − 1
2 · y and f−(y) = (−1

2 + 1
2 i) + (−1

2 − 1
2 i) · y.

(c) Calculate the polynomial representation of f .

Solution: f(x) = f+(x2) + xf−(x2) = 3
2 + (−1

2 + 1
2 i) · x− 1

2 · x2 + (−1
2 − 1

2 i) · x
3.

4. Let f(x) = 1 + x+ x2 + x3.

(a) Draw a circuit for f with at most two plus gates and two times gates.

Solution: If we do not restrict the fan-in, i.e. the number of incoming wires into each gate, there are many
possible implementations. Here is an implementation with fan-in two that corresponds to the formula
(1 + x)(1 + x2).

1

x

+

u1

×
u2

+

u3

× f

(b) Draw the circuit obtained by applying backpropagation to part (a). Explain any simplifications you apply.

Solution: Applying backpropagation in reverse topological order f, u3, u2, u1, x we find df/df = 1 and

df

du3
=

df

df
· ∂u3 [f ] =

df

df
· u1 simplifies to u1

df

du2
=

df

du3
· ∂u2 [u3] =

df

du3
· 1 simplifies to u1

df

du1
=

df

df
· ∂u1 [f ] =

df

df
· u3 simplifies to u3

df

dx
=

df

du1
· ∂x[u1] +

df

du2
· ∂x[u2] +

df

du2
· ∂x[u2] =

df

du1
· 1 + df

du2
· x+

df

du2
· x

which finally simplifies to u3 + u1 · 2x. The (simplified) circuit is

1

x

+

u1

×
u2

+

u3

+ df/dx×
2


