## Practice Midterm 1

1. Systems A and B consist of four linear equations in four unknowns modulo 2.

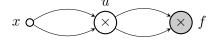
- (a) Solve system A using modular Gauss-Jordan elimination. If there are multiple solutions, specify the free variables and the assignment to the remaining variables in terms of the free variables.
- (b) In system B the value in the first equation was flipped. Produce a contradictory linear combination for system B. You may use any method you like.
- 2. You want to apply Gradient Descent to the system

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

The eigenvalues of the matrix are  $\lambda_1 = 4$  and  $\lambda_2 = -2$  with corresponding eigenvectors  $\mathbf{v}_1 = (1/\sqrt{2}, 1/\sqrt{2}),$   $\mathbf{v}_2 = (1/\sqrt{2}, -1/\sqrt{2}).$ 

- (a) What is the maximum rate  $\rho^*$  below which convergence to the unique solution (1/4, 1/4) is guaranteed (for any initialisation)?
- (b) You run Gradient Descent with rate  $\rho = 0.01$  and initialisation (x, y) = (1, 0). The distance between the state  $(x_t, y_t)$  at time t and the solution (1/4, 1/4) is  $\Theta(b^t)$  for some number b. Find b.
- 3. The list representation of f defined over the fourth roots of unity is

- (a) Find the polynomial representation of f. You may use any method you like. Explain your steps.
- (b) What is the linear approximation of f that minimizes the average square error?
- 4. Show the result of applying backpropagation to the circuit below. Your circuit may use plus and times gates. If you applied any simplifications (e.g.,  $1 \times x$  was replaced by x) explain them.



## Practice Midterm 2

1. Apply Gauss-Jordan Elimination to find a contradictory linear combination for the system of equations below. Explain all the steps.

$$x - y = 1$$
$$y - z = 1$$
$$z - x = 1$$

- 2. You apply Power Iteration on symmetric matrix A with initialization  $\mathbf{x}$ .
  - (a) Let  $\mathbf{x}$  be the state at the end of step t and  $\mathbf{y}$  be the state in step t+1 before normalization. Prove that the spectral norm of A is at least  $\|\mathbf{y}\|/\|\mathbf{x}\|$ , regardless of initialization.
  - (b) Use part (a) to argue that the following matrix has spectral norm greater than 3.

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$

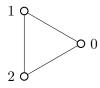
- 3. The function f(x, y, z) evaluates to 1 if all its inputs are +1, and to -1 if at least one of them is a -1. Apply the Fast Fourier-Walsh algorithm to calculate the Fourier coefficients of f. Show all the steps. You may shortcut the execution if an intermediate function simplifies to a constant.
- 4. In this question all times gates take exactly two inputs. Assume n is a power of two.
  - (a) Draw a circuit for  $x^n$  with  $\log n$  times gates.
  - (b) Let  $f(x) = 1 + x + x^2 + \dots + x^{n-1}$ . Show that  $f(x) = (1 x)(1 + x)(1 + x^2)(1 + x^4) \cdots (1 + x^{n/2})$ . (**Hint:** Induction.)
  - (c) Use part (b) to argue that f has a circuit (with plus and times gates) of size  $O((\log n)^2)$ .
  - (d) Let  $g(x) = 1 + 2x + 3x^2 + \cdots + (n-1)x^{n-2}$ . Show that g has a circuit of size  $O((\log n)^2)$ . (**Hint:** Backpropagation.)

## Practice Midterm 3

1. Apply Gauss-Jordan Elimination to find a nonzero solution to the linear system below. Explain your steps.

$$x + y + z = 0$$
$$x + 2y + 4z = 0$$

2. Let A be the adjacency matrix of the 3-cycle (with zeros on the diagonal). The largest eigenvalue of A is  $\lambda_1 = 2$ . The corresponding eigenvector is  $\mathbf{v}_1 = (1/\sqrt{3})(1,1,1)$ .



- (a) Let  $\mathbf{x}$  be any vector that is orthogonal to  $\mathbf{v}_1$ . Show that the state of Power Iteration on A initialized with  $\mathbf{x}$  oscillates between  $\mathbf{x}$  and  $-\mathbf{x}$ . Assume there are no precision errors.
- (b) Use part (a) to deduce the other two eigenvalues  $\lambda_2$  and  $\lambda_3$  of A. What are they?
- 3. Calculate the Fourier transforms of the following functions. You may use any method you like. Write your answer in the tables provided. + and are shorthand for the numbers +1 and -1.

| (a) | $x_1x_2$    | ++ | -+ | +- |    |   | S            | Ø | 1 | 2 | 12 |
|-----|-------------|----|----|----|----|---|--------------|---|---|---|----|
|     | $f(x_1x_2)$ | 1  | 1  | -1 | -1 | - | $\hat{f}(S)$ |   |   |   |    |
| (b) | $x_1x_2$    | ++ | -+ | +- |    |   | S            | Ø | 1 | 2 | 12 |
|     | $g(x_1x_2)$ | 0  | 1  | 1  | 1  |   | $\hat{g}(S)$ |   |   |   |    |

(**Hint:** What is 1 - g?)

(c) 
$$h(x_1x_2x_3) = \begin{cases} f(x_1x_2), & \text{if } x_3 = -1 \\ g(x_1x_2), & \text{if } x_3 = +1. \end{cases}$$
  $\frac{S}{\hat{g}(S)}$ 

(**Hint:** Apply one of the steps of the Fast Fourier-Walsh algorithm.)

4. Show the result of forward propagation on the circuit f(x) = x(1+x(1+x)). Your circuit may use plus and times gates. If you applied any simplifications explain them.