Practice Midterm 1

1. Systems A and B consist of four linear equations in four unknowns modulo 2.

(a) Solve system A using modular Gauss-Jordan elimination. If there are multiple solutions, specify the free variables and the assignment to the remaining variables in terms of the free variables.

Solution: Keeping the equation $x_1 + x_2 = 0$ and eliminating x_1 from the others gives the system $x_2 + y_1 = 1$, $x_2 + y_2 = 1$, $y_1 + y_2 = 0$. Now we keep $x_2 + y_1 = 1$ and eliminate x_2 to obtain $y_1 + y_2 = 0$ twice. Eliminating y_1 leaves y_2 as the free variable. Substituting back gives the solution $y_1 = y_2$, $x_2 = y_2 + 1$, $x_1 = y_2 + 1$. (As y_2 can be either 0 or 1 there are two solutions for (x_1, x_2, y_1, y_2) : (1, 1, 0, 0) and (0, 0, 1, 1).)

(b) In system B the value in the first equation was flipped. Produce a contradictory linear combination for system B. You may use any method you like.

Solution: The contradictory linear combination is the sum of all the equations. As each variable appears twice the left-hand side vanishes modulo two. The right hand side equals 1 + 0 + 1 + 1 = 1.

2. You want to apply Gradient Descent to the system

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

The eigenvalues of the matrix are $\lambda_1 = 4$ and $\lambda_2 = -2$ with corresponding eigenvectors $\mathbf{v}_1 = (1/\sqrt{2}, 1/\sqrt{2}),$ $\mathbf{v}_2 = (1/\sqrt{2}, -1/\sqrt{2}).$

(a) What is the maximum rate ρ^* below which convergence to the unique solution (1/4, 1/4) is guaranteed (for any initialisation)?

Solution: ρ^* is the inverse square of the spectral norm of A. The spectral norm of a symmetric matrix is the largest eigenvalue in absolute value, which is 16 in this case. Therefore $\rho^* = 1/16$.

(b) You run Gradient Descent with rate $\rho = 0.01$ and initialisation (x, y) = (1, 0). The distance between the state (x_t, y_t) at time t and the solution (1/4, 1/4) is $\Theta(b^t)$ for some number b. Find b.

Solution: b = 0.92. Let $\mathbf{x}^* = (1/4, 1/4)$ and $\mathbf{x} = (x, y)$ be the state of the algorithm at some point. The difference $\mathbf{x} - \mathbf{x}^*$ is multiplied by the matrix $B = I - 2\rho AA^T$ at every step of the algorithm. As A is symmetric, AA^T has the same eigenvectors as A^2 and therefore A, and so does $B = I - 2\rho AA^T$. The associated eigenvalues are $1 - 2\rho \lambda_1^2 = 0.68$ and $1 - 2\rho \lambda_2^2 = 0.92$.

3. The list representation of f defined over the fourth roots of unity is

(a) Find the polynomial representation of f. You may use any method you like. Explain your steps.

Solution: We can calculate the Fourier coefficients by averaging the product of f and the corresponding basis function:

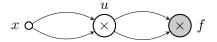
$$\begin{split} \hat{f}(0) &= \text{average of } f(x) = \frac{1+1}{4} = \frac{1}{2} \\ \hat{f}(1) &= \text{average of } f(x) \cdot x = \frac{i+(-i)}{4} = 0 \\ \hat{f}(2) &= \text{average of } f(x) \cdot x^2 = \frac{i^2+(-i)^2}{4} = -\frac{1}{2} \\ \hat{f}(3) &= \text{average of } f(x) \cdot x^3 = \frac{i^3+(-i)^3}{4} = 0 \end{split}$$

so
$$f(x) = \frac{1}{2} - \frac{1}{2}x^2$$
.

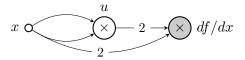
(b) What is the linear approximation of f that minimizes the average square error?

Solution: It is $\hat{f}(0) + \hat{f}(1)x$, which is the constant 1/2. (The average square error of this approximation is 1/2.)

4. Show the result of applying backpropagation to the circuit below. Your circuit may use plus and times gates. If you applied any simplifications (e.g., $1 \times x$ was replaced by x) explain them.



Solution: The circuit has gates df/df = 1, df/du, and df/dx with connections $df/du = u \times df/df + df/df \times u$ which we simplify to $df/df \times (2u)$ and further to 2u, and $df/dx = x \times df/du + df/du \times x$, which we simplify to $df/du \times (2x)$. The f-gate can be removed as it it does not affect the output df/dx. The resulting simplified circuit is



Practice Midterm 2

1. Apply Gauss-Jordan Elimination to find a contradictory linear combination for the system of equations below. Explain all the steps.

$$x - y = 1$$
$$y - z = 1$$
$$z - x = 1$$

Solution: We are looking for a linear combination of the equations for which the left-hand side is identically zero and the right-hand side is 1. Let a, b, c be the coefficients. Then (a-c)x+(c-b)z+(b-a)y=a+b+c, so we need a-c=0, c-b=0, b-a=0, a+b+c=1. Eliminating a from the last three equations we obtain b-c=0 (twice) and b+2c=1. Eliminating b we get b=1 and substituting back we find b=1. Indeed, scaling each equation by b=1 and adding everything up gives the contradiction b=1.

2. You apply Power Iteration on symmetric matrix A with initialization \mathbf{x} .

(a) Let \mathbf{x} be the state at the end of step t and \mathbf{y} be the state in step t+1 before normalization. Prove that the spectral norm of A is at least $\|\mathbf{y}\|/\|\mathbf{x}\|$, regardless of initialization.

Solution: The spectral norm is the largest possible value of $||A\mathbf{z}||/||\mathbf{z}||$ for all possible \mathbf{z} . If we instantiate \mathbf{z} with \mathbf{x} , we get that $||\mathbf{y}||/||\mathbf{x}|| = ||A\mathbf{x}||/||\mathbf{x}||$ cannot be larger than this maximum.

(b) Use part (a) to argue that the following matrix has spectral norm greater than 3.

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$

Solution: Suppose we instantiate Power Iteration with $\mathbf{x}=(1,1,1)$. Then $\mathbf{y}=A\mathbf{x}=(3,4,3)$ and $||A|| \ge ||\mathbf{y}||/||\mathbf{x}|| = \sqrt{3^2+4^2+3^2}/\sqrt{3} \ge 3$.

3. The function f(x, y, z) evaluates to 1 if all its inputs are +1, and to -1 if at least one of them is a -1. Apply the Fast Fourier-Walsh algorithm to calculate the Fourier coefficients of f. Show all the steps. You may shortcut the execution if an intermediate function simplifies to a constant.

Solution: The function f(x, y, -1) is always -1. The function f(x, y, +1) is 1 if x = y = +1 and -1 otherwise. Applying the next round of recursion we get f(x, +1, +1) = x and f(x, -1, +1) = -1, so

$$f(x,y,+1) = f(x,+1,+1) \cdot \frac{1+y}{2} + f(x,-1,+1) \cdot \frac{1-y}{2} = x \frac{1+y}{2} + (-1) \frac{1-y}{2} = -\frac{1}{2} + \frac{1}{2}x + \frac{1}{2}y + \frac{1}{2}xy$$

and

$$f(x,y,z) = f(x,y,+1) \cdot \frac{1+z}{2} + f(x,y,-1) \cdot \frac{1-z}{2}$$

$$= \left(-\frac{1}{2} + \frac{1}{2}x + \frac{1}{2}y + \frac{1}{2}xy\right) \cdot \frac{1+z}{2} + (-1) \cdot \frac{1-z}{2}$$

$$= -\frac{3}{4} + \frac{1}{4}x + \frac{1}{4}y + \frac{1}{4}z + \frac{1}{4}xy + \frac{1}{4}xz + \frac{1}{4}yz + \frac{1}{4}xyz.$$

The Fourier coefficients are $\hat{f}(\emptyset) = -3/4$ and $\hat{f}(S) = 1/4$ for all other S.

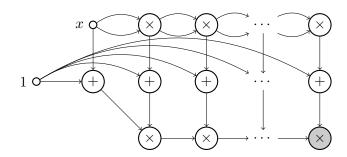
- 4. In this question all times gates take exactly two inputs. Assume n is a power of two.
 - (a) Draw a circuit for x^n with $\log n$ times gates.

Solution:

(b) Let $f(x) = 1 + x + x^2 + \dots + x^{n-1}$. Show that f has a circuit (with plus and times gates) of size $O((\log n)^2)$. (**Hint:** Factor f. Try n = 4 first.)

Solution: f factors into $(1+x)(1+x^2)(1+x^4)\cdots(1+x^{n/2})$. There are $\log n$ factors. By part (a) each factor can be calculated with $O(\log n)$ gates. As f is the product of them all, it can be calculated with $O((\log n)^2)$ gates.

In fact, f can be calculated with $O(\log n)$ gates only by the following circuit:



(c) Let $g(x) = 1 + 2x + 3x^2 + \cdots + (n-1)x^{n-2}$. Show that g has a circuit of size $O((\log n)^2)$. (**Hint:** Forward/backpropagation.)

Solution: As both the times and plus gates have two incoming wires, the circuit for f has $O(\log n)$ wires (or $O((\log n)^2)$ for the less optimal construction). As g is the derivative of f, applying backpropagation to f gives a circuit for df/dx = g of same asymptotic size.

Practice Midterm 3

1. Apply Gauss-Jordan Elimination to find a nonzero solution to the linear system below. Explain your steps.

$$x + y + z = 0$$
$$x + 2y + 4z = 0$$

Solution: After eliminating x we obtain y+3z=0. After eliminating y, z becomes a free variable. The solution found by Gauss-Jordan Elimination is $FREE=\{z\},\ y=-3z,\ x=-y-z=2z$. Setting z to any nonzero value yields a nonzero solution. For example, z=1 gives y=-3 and z=2.

2. Let A be the adjacency matrix of the 3-cycle (with zeros on the diagonal). The largest eigenvalue of A is $\lambda_1 = 2$. The corresponding eigenvector is $\mathbf{v}_1 = (1/\sqrt{3})(1,1,1)$.

(a) Let \mathbf{x} be any vector that is orthogonal to \mathbf{v}_1 . Show that the state of Power Iteration on A initialized with \mathbf{x} oscillates between \mathbf{x} and $-\mathbf{x}$. Assume there are no precision errors.

Solution: Let $\mathbf{x} = (x_1, x_2, x_3)$. As it is orthogonal to \mathbf{v}_1 , $x_1 + x_2 + x_3 = 0$. Applying A to \mathbf{x} gives $A\mathbf{x} = (x_2 + x_3, x_3 + x_1, x_1 + x_2) = (-x_1, -x_2, -x_3) = -\mathbf{x}$ because subtracting $x_1 + x_2 + x_3$ from every coordinate does not change \mathbf{x} .

(b) Use part (a) to deduce the other two eigenvalues λ_2 and λ_3 of A. What are they?

Solution: $\lambda_2 = \lambda_3 = -1$. As eigenvectors are mutually orthogonal, applying A to an eigenvector \mathbf{v} other than \mathbf{v}_1 outputs $-\mathbf{v}$, so the corresponding eigenvalue must be -1.

3. Calculate the Fourier transforms of the following functions. You may use any method you like. Write your answer in the tables provided. + and - are shorthand for the numbers +1 and -1.

(a)
$$\frac{x_1x_2}{f(x_1x_2)} \begin{vmatrix} ++ & -+ & +- & -- \\ 1 & 1 & -1 & -1 \end{vmatrix}$$
 $\frac{S}{\hat{f}(S)} \begin{vmatrix} \varnothing & 1 & 2 & 12 \\ 0 & 0 & 1 & 0 \end{vmatrix}$

This is the function x_2 . Its only nonzero Fourier coefficient is $\hat{f}(\{2\}) = 1$.

(b)
$$\frac{x_1x_2}{g(x_1x_2)} \begin{vmatrix} ++ & -+ & +- & -- \\ 0 & 1 & 1 & 1 \end{vmatrix} = \frac{S}{\hat{g}(S)} \begin{vmatrix} 0 & 1 & 2 & 12 \\ 3/4 & -1/4 & -1/4 & -1/4 \end{vmatrix}$$

(**Hint:** What is 1 - g?)

1-g is the point function point₊₊. Its polynomial representation is $(1+x_1)/2 \cdot (1+x_2/2) = \frac{1}{4} + \frac{1}{4}x_1 + \frac{1}{4}x_2 + \frac{1}{4}x_1x_2$. Therefore $g = \frac{3}{4} - \frac{1}{4}x_1 - \frac{1}{4}x_2 - \frac{1}{4}x_1x_2$.

(c)
$$h(x_1x_2x_3) = \begin{cases} f(x_1x_2), & \text{if } x_3 = -1 \\ g(x_1x_2), & \text{if } x_3 = +1. \end{cases}$$

$$\frac{S \quad \varnothing \quad 1 \quad 2 \quad 3 \quad 12 \quad 13 \quad 23 \quad 123}{\hat{g}(S) \quad \frac{3}{8} \quad -\frac{1}{8} \quad \frac{3}{8} \quad \frac{3}{8} \quad -\frac{1}{8} \quad -\frac{5}{8} \quad -\frac{1}{8}}$$

(**Hint:** Apply one of the steps of the Fast Fourier-Walsh algorithm.)

$$h(x_1x_2x_3) = \frac{1-x_3}{2} \cdot f + \frac{1+x_3}{2} \cdot g$$

$$= \frac{1-x_3}{2} \cdot x_2 + \frac{1+x_3}{2} \cdot \left(\frac{3}{4} - \frac{1}{4}x_1 - \frac{1}{4}x_2 - \frac{1}{4}x_1x_2\right)$$

$$= \left(\frac{1}{2}x_2 - \frac{1}{2}x_2x_3\right) + \left(\frac{3}{8} - \frac{1}{8}x_1 - \frac{1}{8}x_2 - \frac{1}{8}x_1x_2 + \frac{3}{8}x_3 - \frac{1}{8}x_1x_3 - \frac{1}{8}x_2x_3 - \frac{1}{8}x_1x_2x_3\right)$$

$$= \frac{3}{8} - \frac{1}{8}x_1 + \frac{3}{8}x_2 - \frac{1}{8}x_1x_2 + \frac{3}{8}x_3 - \frac{1}{8}x_1x_3 - \frac{5}{8}x_2x_3 - \frac{1}{8}x_1x_2x_3.$$

4. What is the linear approximation of f that minimizes the average square error?

Solution: The constant 3/4. (The approximation error is $3 \cdot (1/4)^2 = 3/16$.)

5. Show the result of forward propagation on the circuit f(x) = x(1 + x(1 + x)). Your circuit may use plus and times gates. If you applied any simplifications explain them.

Solution: I will apply the forward propagation algorithm for polynomials. Every multiplication is of the form 1 + h. Its derivative is d1/dx + dh/dx = 0 + dh/dx. I omit the addition of zero. Every multiplication is of the form $x \times h$ its derivative is $1 \times h + x \times dh/dx$. I omit the multiplication by one and simplify this to $h + x \times dh/dx$. (The f-labeled gate is not used and could have been omitted.)

