CSI 4103 / 5138: Great Algorithms Homework 1 Solutions
University of Ottawa, Fall 2025

Question 1

Linear equation solvers can sometimes be used to solve constraint systems that are not exactly linear like:

(a)

r+y=2o0rb6
r+2y=1lor7
r+3y=0or2 (1)
2c+y=1o0rb
3r+y=7or8.

Express as a linear system of equations in the five “variables” 22, y?, zy, x, and y.
(Hint: Write each constraint “e = a or b” as (e — a)(e — b) = 0 and expand.)

Solution: In matrix form the system is

112 -8 -8 z? —12
1 4 4 -8 -16 y? -7
1 96 -2 —6|-|Jzeyl=1]20
4 1 4 —-12 —6 x -5
9 1 6 —45 —15 y —56

Treating these variables as independent, solve the system. You may want to use a computer for this. What
are z and y? Verify that they satisfy all constraints in (T]).

Solution: It solves to 22 = 9,4% = 1,2y = -3,z = 3,y = —1. Indeed z = 3,y = —1 satisfy all the
constraints with right-hand side values 2, 1,0, 5,8 in order.

Here is an alternative method for solving . Take any two constraints in . For all four possible pairs of
values of the right-hand side, find z and y. Among these four, keep the one that is consistent with the other
three constraints.

Solution: I take the first two constraints and obtain the following solutions:

right-hand values | 2,1 2,7 6,1 6,7
T,y 13,-1 -3,5 1,5 5,1

The first solution-pair is the only one that is consistent with all equations. The other three all violate the
third equation.

Suppose you have a system with 50 unknowns x1 to x59, and 5000 constraints of the type a1x1+- - -+asoxs0 =
b or c. Which of the methods do you think is preferable for solving such a system? Justify your answer.

Solution: The method in part (b) transforms it into a system with (520) “variables” x;x; with ¢ # j, plus

50 “variables” x? and that many x;. The total number of variables is n = (520) +2-50 = 1325. Assuming
that, among the 5000 constraints, there are at least 1325 that are linearly independent, the time it takes to
solve for all the variables via Gaussian elimination is O(n?), which is on the order of 23!. In contrast, the
method from part (c¢) would need to try all possible assignments to some 50 of the equations and its time
complexity is on the order of 2°9. The method from part (b) appears more efficient.

The drawback of method (b) is that it requires 1325 linearly independent constraints. If fewer are available
it is unclear how to make it work. In contrast, method (c) works as long as the left-hand side of some 50
equations in the original system are linearly independent. Then every choice for the right-hand side values
will uniquely determine a solution. One of these is guaranteed to work assuming the system had a solution
in the first place.



Question 2

In this question you will investigate Gradient Descent on underdetermined linear systems.

(a)

Write down the sum of squares loss for the equation = + y = 1 and calculate its gradient.

Solution: The sum-of-squares loss is f(x,y) = (v +y — 1)2. Its gradient is (0f/0x,0x/dy) = (2(x +y —
1),2(x+y—1)).

Suppose you run gradient descent with rate p on part (a). How do the values of x + y — 1 and  — y change
in each iteration? What is the maximum rate that guarantees convergence?

Solution: (z,y) changes by —p(2(x +y —1),2(x +y — 1)). Therefore  + y changes by —4p(z +y — 1), and
so does x +y — 1 (as —1 doesn’t change). Namely

(z+y—1)=(@+y—-1) —4px+y—1)=(1—-4p)(x+y—1). (2)

So & +y — 1 is scaled by 1 —4p in each iteration. x — y doesn’t change because the x-change cancels out the
y-change.

For convergence to happen 1 — 4p needs to be bounded by one in absolute value. Otherwise x 4+ y — 1 will
blow out of control. Therefore p can be anywhere between 0 and 1/2.

To which target (z*,y*) does gradient descent in part (b) converge to under initialization x = 0,y = 0?7 How
about x =1,y = —17

Solution: Assuming convergence, z+y — 1 eventually vanishes but x —y stays invariant. If the initialization
is = y = 0 the target (z*,y*) must satisfy both 2* + y* —1=0and 2* —y*=0—-0=0. It is (1/2,1/2).
If z =1 and y = —1 the target equations are z* +y* —1 =0 and z* —y* = 1 — (—1) = 2, so the target is

(3/2,-1/2).

For each of the initializations in part (b), calculate the distance between the state (z,y:) of Gradient Descent
at step ¢t and (z*,y*) as a function of p. At which step does the distance dip below 0.01 when p = 0.17

Solution: When initialized with p = .1 and = = y = 0, the first five steps are (0,0) — (.2,.2) — (.32,.32) —
(.392,.392) — (.395,.395). At step 8, xg = yg ~ .4916. The distance between (xs,ys) and (z*,y*) is about
V2-.00842 ~ .012. At step 9, z9 = yg =~ .495 and the distance is about .007.

We can reach the same conclusion analytically. As z — y starts at zero and remains the same, z must equals
y throughout Gradient Descent. Equation then tells us that z+y — 1 = 2z — 1 shrinks by 1 —4p in every
step, and so does 2y — 1. After ¢ steps, 2z; — 1 equals (1 —4p)t-(2-0—1) = —(1 —4p)’. As 22* — 1 drops to
zero, 2x; — 2x* has to be —(1 — 4p)t. Same holds for 2y, — 2y*. Finally, the distance from (x4, ;) to (z*,y*)
is

V= P+ =y = RO 40P+ J1 =40 = - (1= 40

When p is 0.1, it drops below 0.1 at the first step ¢ when 0.6°/1/2 < 0.01, which is ¢ = [log.01v/2/log.6] = 9.
When the initial point is (1, —1), the invariant quantity is © —y = 1 — (—1) = 2. Equation now tells us
that z+y —1 = 22 — 3 shrinks by 1 —4p per step and so does 2y +2. Now (1 —4p)!(2x; —3) = 229 —3 = —1.
So 274 —3 = —(1—4p)t, and so must be 2(x; —x*). As for y, (1—4p)"(2y; +2) = 2yo+2 = 0, and y; will never
change. The distance at time ¢ is |x; — 2*| = (1/2)(1 — 4p)’. It drops below 0.01 as soon as 1/2 - .6" < .01
which is also t = 9.

(Extra credit) Prove that, in general, the target x* of gradient descent is affected by the choice of initial-
ization if and only if the columns of the input matrix A are linearly dependent.

Solution: There is an explanation for the calculations in part (d). The “directions” (1,1) and (1,—1) of
r+y and x —y are precisely the (unnormalized) eigenvectors of AT A. Whenever v is an eigenvector of A7 A
with eigenvalue A, v - (x — x*) scales by 1 — 2p\ in each iteration because

v (X —x*)=v-(I—-2pATA)(x — x*) = v(1 — 2pA)(x — x*) = (1 = 2pA)v - (x — x¥). (3)



Viewed from the basis of the eigenvectors of AT A, gradient descent is a very simple algorithm. If we move
the origin to x*, along each eigenvector, x scales by 1 — 2p - eigenvalue.

The directions in which x does not change are then those eigenvectors associated to zero eigenvalues. So if
AT A has eigenvalue zero, x* will depend on x in the direction of the corresponding eigenvector. Conversely,
if all eigenvalues are nonzero there cannot be two different convergence targets x and x* because they should
be invariant under the application of . But will bring x closer to x* in each iteration if when all
eigenvalues are nonzero (and p is sufficiently small).

If this argument didn’t make sense to you, there is a more direct way to prove it. The points of convergence of
gradient descent are those x for which V f(x) = 2AT (Ax —b) is zero. If A’s columns have a linear dependence
y then Ay equals zero, so if any point x* is a target so must be x* + y. It is not unique.

Conversely, if there are two such points x # x* then V f(x) — Vf(x*) = 2AT A(x —x*), so y = x — x* satisfies
AT Ay = 0. Multiplying by the row vector y on the left gives 0 = yAT Ay = ||Ay||?>. So Ay must be zero
and y is a linear dependence of the columns of A.

Question 3

The condition number « of a linear system is a measure of proximity to linear dependence. In Lecture 2 we argued
that it controls the convergence rate of Gradient Descent. You will investigate it in this question.

(a)

The condition number of a PSD matrix S is defined as the ratio between its largest and its smallest eigen-
values. Find the condition number of the matrix

11
5= [1 1.01]

You may use any method you like, but you must explain how you arrived at your answer.

Solution: I ran QR iteration. The first two steps give

1 1 . 2.005 —.005 2.005 107°
1 1.01 —.005 .005 107 005 |

The eigenvalue estimates quickly converge to 2.005 and 0.005. The condition number is their ratio, which is
around 401.

The condition number of a general matrix A is defined as the square root of the condition number of the
PSD matrix AT A: k(A) = \/k(ATA). Prove that when S is PSD this is consistent with the definition in
part (a), i.e., k(S) = /k(STS).

Solution: If S is symmetric, i.e., ST = S, then the eigenvalues of STS are the squares of the eigenvalues of
S: If A\, v is an eigenvalue-eigenvector pair of S, then

STSv = STAv = ASv = \?v,

so A2, v is an eigenvalue-eigenvector pair of STS. As S is positive semidefinite its largest and smallest
eigenvalues are positive, so the largest and smallest eigenvalues of ST.S must be their squares. The condition
number #(S7S) is their ratio, so it is the square of x(S): (ST S) = x(S)2.

Use part (a) to calculate the condition number of

1 0.9
A= [1 1.1] '

Solution: AT A equals the matrix S in part (a), so k(AT A) is about 20.



(d) Prove that the condition number of a square matrix A is finite if and only if its rows are linearly independent.
Use this equivalence to explain qualitatively why the answer in part (c) is so large. You may use the fact
that if the rows of A are linearly dependent then so are its columns.

Solution:

If the rows of A are linearly dependent then so are its columns. Then Ax is zero for some nonzero x
representing this linear dependence on the columns, and so is A7 Ax. So AT A must have zero as its smallest
eigenvalue. Its condition number is something divided by zero which is infinite.

If AT A has infinite condition number then A7 Ax is zero for some nonzero x. If Ax is nonzero, then it is a
linear dependence between the columns of A7 which are the same as the rows of A. If it is zero, then x is a
linear dependence between the columns of A. The rows of A must then also be linearly dependent.

The answer in (c) is relatively large because the rows of A are “almost” linearly dependent. If we perturb
the second column by (40.1,—0.1) a dependence is created and the smallest eigenvalue is zero. As 0.1 is a
small number relative to the scale of the matrix we expect the smallest eigenvalue of the original AT A to
be no larger than this perturbation, namely on the order of 0.12 = 0.01. Its spectral norm, in contrast, is
around 4; power iteration on AT A should stabilize close to the direction (1,1). The condition number of A

is indeed close to /4/0.01 = 20.

Question 4

Find your personalized hidden parity instance here: https://andrejb.net/csi4103/hw/25H01.html

The instance consists of 20 equations in 12 unknowns. + and — stand for the numbers +1 and —1, respectively.
You need to find a subset of the columns that multiplies to the right-hand side.

Write down your solution in the form of indices of the relevant columns (in increasing order). For instance, the
solution to the example in Section 7 of Lecture Notes 1 is: 2, 4.

Explain clearly how you arrived at your solution. Undocumented computer code will not be entertained as a
satisfactory explanation.

Solution: I solved my [instance using simple Gaussian elimination. The program produced the solution 3,5, 7, 10.
I verified that the corresponding columns of the left-hand side add to the right-hand side modulo two.

To implement Gaussian elimination, I first converted each row of the instance into a number whose ¢-th bit is the
parity of the i-th symbol on the left-hand side and whose zeroth bit is the parity of the right-hand side. I wrote
Gaussian elimination in two steps: A forward pass and a backward pass.

The objective of the forward pass is to reduce the system into a diagonal form in which variable ¢ appears in the
i-th equation but no lower-indexed variables appear in it. To implement it I went over the variables in order, looked
for the first equation in which the variable appears, swapped it with the first unused equation in the system, and
then added it to all the remaining equations in which it also appears by XORing their number representations.

In the backward pass I read off the variables in reverse order. The variables that evaluate to 1 were included in
the assignment and were eliminated from all equations in which they appear by XORing the corresponding zeroth
bits which represent the right-hand side.

This instance is small enough that a brute force search algorithm that tries all 2!? possible candidate solutions
should have worked just as well.


https://andrejb.net/csi4103/hw/25H01.html
https://andrejb.net/csi4103/hw/24H01.php?check=0&sid=1

