
CSI 4103 / 5138: Great Algorithms Homework 2 Solutions
University of Ottawa, Fall 2025

Question 1

Let S be the symmetric matrix −1 0 1
0 1 −1
1 −1 0

 .

(a) Run power iteration on S with initialization a = (1, 0, 0). What is the state a5 after five steps? What is the
spectral norm estimate α5 = ∥Sa5∥/∥a5∥?

Solution: The first five iterates are (0, 0, 0) → (−.707, 0, .707) → (.816,−.408,−.408) → (−.707, 0, .707) →
(.816,−.408,−.408) → a5 = (−.707, 0, .707) up to three digits of precision. The spectral norm estimate is
α5 ≈ 1.732.

(b) Repeat part (a) with initialization b = (0, 1, 0). How do b5 and β5 compare with a5 and α5 above? Explain
the similarities and differences.

Solution: Now the iterates are (0, 1, 0) → (0, .707,−.707) → (−.408, .816,−.408) → (0, .707,−.707) →
(−.408, .816,−.408) → b5 = (0, .707,−.707) and β5 ≈ 1.732.

The matrix S has eigenvalues
√
3, 0, and −

√
3. Let’s call the corresponding eigenvectors v+, v0, and v−

Each iterate amplifies the component of x in the directions of v+ and v− in equal measure. The component
in the direction of v0 eventually vanishes. The state is evantually dominated by some linear combination

α+

√
3
t
v+ +α−(−

√
3)tv− normalized suitably. The values of α+ and α− depend on the initialization, which

explains the discrepancy in the states. The state itself keeps shifting between (multiples of) α+v+ + α−v−
and α+v+ − α−v−, which explains the periodic pattern. The absolute value of the dominant eigenvalues is√
3, which explains the proximity of both α5 and β5 to

√
3.

(c) Now repeat parts (a) and (b) on input S′ = S + I, where I is the identity matrix. Explain how the answers
in this part relate to the ones you obtained in parts (a) and (b).

Solution: The new iterates are a = (1, 0, 0) → (0, 0, 1) → (.577,−.577, .577) → (.229,−.688, .688) →
(.254,−.763, .594) → c5 = (.218,−.777, .591) and b = (0, 1, 0) → (0, .894,−.447) → (−.169, .845,−.507) →
(−.186, .808,−.559) → (−.205, .796,−.569) → c′5 = (−.208, .791,−.575). The iterations now appear to
converge to the same vector (up to sign). At step 10 they match up to three digits of precision: −c10 ≈
c′10 ≈ (−.211, .789,−.577).

Adding the identity matrix so S has the effect of shifting all eigenvalues up by one while preserving the
corresponding eigenvector. Thus S′ now has the single dominant eigenvalue 1 +

√
3 with eigenvector v+.

Iterates will eventually converge to v+ (unless the initialization is exactly orthogonal to it). This is why the
eventual state no longer depends on the initialization, and why the iterates stabilize.

(d) Finally, pick any vector d orthogonal to the output c5 from part (c) (when initialized with (1, 0, 0)). What
happens when you run power iteration on S′ with initialization d? Explain.

Solution: We start with d = (.777, .218, 0) and normalize it to length 1. This is orthogonal to c5 at least
up to 3 digits of precision. The first ten iterates dt and the corresponding values rt = ∥dt∥/∥dt−1∥ are

t d_t r_t

0 [0.777 0.218 0]

1 [0. 0.615 0.789] .709

2 [0.857 0.48 0.189] .920

3 [0.193 0.791 0.58] .975

4 [0.501 0.865 -0.015] 1.158

5 [-0.008 0.977 -0.212] 1.786

6 [-0.085 0.872 -0.482] 2.485

7 [-0.179 0.826 -0.534] 2.694

8 [-0.196 0.802 -0.564] 2.727

9 [-0.207 0.794 -0.572] 2.731

10 [-0.209 0.79 -0.576] 2.732

If d was perfectly orthogonal to v+, all iterates would belong to the subspace spanned by v0 and v−.
Eventually v0 should dominate as it is associated to the larger eigenvalue 1. At step 3 the norm ratio is
around one, indicating that d3 might be zeroing in on v0. This effect, is however, short-lived; d10 is already
quite close to c10.

The reason is that, owing to convergence and precision errors, d is not perfectly orthogonal to v+. It has
some small component in the direction of v+: d ·v+ ≈ d ·c10 ≈ .008. Although initially small this component
is amplified by the largest eigenvalue of S′ and eventually dominates dt.

Question 2

Let f(x, y) = ϕ(x− y) + ϕ(x+ y − 1), where ϕ is some “activation function” with one input and one output.

(a) Draw a circuit for f with +, ×, and ϕ gates. You may use edge weights for scaling.

Solution:

x y 1

+u0 +u1

ϕv0 ϕv1

+

f

−
1

−1

(b) Draw the circuit ∇f obtained by applying Backpropagation to f . The gates in your circuits should be +,
×, ϕ, and ϕ′. What is the size of this circuit? What is the depth?

Solution: In this circuit there are gates ∂f/∂z for every gate z in the circuit in part (a). The circuit is
constructed by applying the chain rule backwards starting from ∂f/∂f = 1:

∂f

∂v0
=

∂f

∂f
· ∂v0 [f] =

∂f

∂f
× 1

∂f

∂u0
=

∂f

∂vi
· ∂u0 [vi] =

∂f

∂v0
× ϕ′(u0)

∂f

∂x
=

∂f

∂u0
· ∂x[u0] +

∂f

∂u1
· ∂x[u1] =

∂f

∂u0
× 1 +

∂f

∂u1
× 1

and similarly for v1, u1, y. The resulting circuit is

x
+

∂f
∂x

y
+

∂f
∂y

1

+u0

×∂f
∂u0

ϕ′
+u1

×∂f
∂u1

ϕ′

ϕv0 ×∂f
∂v0

ϕv1 ×∂f
∂v1

+

f

1

−
1

−
1 −1

This circuit has size 10 (after eliminating gates v0, v1, f) and depth 4. If we did not allow scaling by constants,
there would be an extra 3 multiplication gates that implement these scalings.

(c) Assume now that ϕ is the function ϕ(t) = 1
2 t

2. Then ϕ′(t) = t is the identity function. Simplify the circuit
by evaluating all gates that depend on constants only (e.g., replace 1 × (−3) by the constant −3) and
short-circuiting all ϕ′ gates. What is the size and depth of the simplified circuit?

Solution: The ϕ′ gates become through connections. The multiplication gates take two arguments one of
which is the constant 1 so they also disappear. The resulting circuit has size 4 and depth 2.

x

+

+

∂f
∂x

y

+

+

∂f
∂y

1

u0 u1

−1 −1

−1

(d) Explain how the circuit in part (c) computes the function ∇f(x) = AT (Ax+ b), where Ax = b is the linear
system x− y = 0, x+ y = 1.

Solution: The layer connecting x, y, 1 to u0, u1 is inherited from the circuit in part (a). It computes Ax+ b.
Without the constant 1 it computes the function u = Ax. The next layer is its mirror image. This is the
function ∇f = ATu.

(e) In general, given a linear system with m equations and n unknowns, what is the size, depth, and number of
wires of the output of backpropagation given a circuit for f(x) = 1

2∥Ax− b∥2 as input? Provide an answer
in big-theta notation and justify it.

Solution: Applying backpropagation to the circuit representation of f , after simplifying, results in a circuit
whose first layer has m plus gates u1 up to um. Gate uj is connected to input xi by a wire scaled with aij .
The second layer has n plus gates ∂f/∂xi. The wire from uj to ∂f/∂xi is also scaled by aij . The size of this
circuit is m+ n and its depth is two (O(1) in asymptotic notation).

The number of wires is at most m(n + 1) in the lower and at most mn in the upper one as there can be
a potential wire between every pair of nodes, for a total of O(mn) wires. If A was a sparse matrix with s
nonzero entries, the number of wires would be at most 2s+m.

If we did not allow scaling of the edges, the size of the circuit would grow to O(mn) because each edge would
have to be augmented by a gate that implements multiplication by the resulting constant.

This is why applying Theorem 3 in Lecture 5 gives a circuit bound of O(mn), i.e., the number of wires. The
non-simplified circuit produced by backpropagation contains a multiplication by ∂xi [uj] for every addition
gate uj in f . This is a total of mn multiplications. In our instance, uj are additions, ∂xi [uj] is the constant
aij , and all these multiplications can be replaced by wire scalings, reducing the effective circuit size.

Question 3

A decision tree is a nested if-then-else program that branches over variables and outputs variables or their negations.
For example, the decision tree in Figure 1 evaluates to +1 when the input is x = +1, y = +1, z = +1.

xif

ythen if zelse

xthen −zelse

+ −

+ −

Figure 1: A function f(x, y, z) specified by a decision tree.

(a) Write the list representation of the function f specified by the decision tree in Figure 1.

Solution: With + and − standing for +1 and −1, respectively, the list representation is

xyz +++ ++− +−+ +−− −++ −+− −−+ −−−
f(x, y, z) + + − + + − + −

(b) Write the polynomial representation of f . (Hint: For every root-to-leaf path write a polynomial that outputs
the leaf value if this path is taken and zero if not.)

Solution: Every root-to-leaf path can be described by a function that evaluates to its leaf value when this
path is taken and zero otherwise. The point functions describing the three path (in a left-to-right ordering)
are point++(x, y), −zpoint+−(x, y), and zpoint−(x). f is the sum of these three functions:

f(x, y, z) = point++(x, y)− zpoint+−(x, y) + zpoint−(x)

=
1 + x

2
· 1 + y

2
− z · 1 + x

2
· 1− y

2
+ z · 1− x

2
= 1

4 + 1
4x+ 1

4y +
1
4z +

1
4xy −

3
4xz +

1
4yz +

1
4xyz.

As a sanity check, the sum of the squares of the coefficients equals one as required by Parseval’s identity.

(c) The depth of the decision tree is the maximum number of nested loops plus one, which equals the length of
the longest root-to-leaf path in the tree representation plus one. For example the decision tree in Figure 1
has depth three. Prove that for any decision tree, the degree of its polynomial representation is at most its
depth.

Solution: Each path p in the decision tree is labeled by a sequence of variable-value pairs (x1, v1), . . . , (xd, vd)
and an output variable y. The function fp = y · pointv1,...,vd(x1, . . . , xd) takes its leaf value when the path is
taken and zero otherwise. This function fp depends on d+1 inputs so its degree can be at most d+1, which
is at most the depth. The decision tree itself is the sum of all such fp so its degree is also at most the depth.

(d) The 2-bit addressing function is the function addr2 : {−1,+1}6 → {−1,+1} given by

addr2(x, y, z++, z+−, z−+, z−−) = zxy.

Describe a decision tree for addr2. What is the degree of its polynomial representation? Prove both an upper
bound (it is at most ...) and a lower bound (it is at least ... because ...).

Solution: The decision tree reads x, then reads y, then outputs zxy:

x

y y

z++ z+− z−+ z−−

+ −

+ − + −

The degree of addr2 is at most 3 as this decision tree has depth 2. To argue that its degree is at least 3 we
can show that the monomial xyz++ appears in the polynomial representation of addr2 with nonzero Fourier
coefficient. This Fourier coefficient is the average of addr2 times xyz++.

This average can be calculated by summing up all 26 = 64 possible assignments. An easier way (if you
know probability) is to apply the law of total expectation: Conditioned on x = y = +1, addr2 = z++ and
addr2 · (xyz++) = 1. Otherwise addr2 is conditionally independent of z++ and addr2 · (xyz++) averages out
to zero.

E[addr2 · (xyz++)] =
1
4 E[addr2 · (xyz++)|x = y = 1] + 3

4 E[addr2 · (xyz++)|not (x = y = 1)]

= 1
4 E[z++ · (1 · 1 · z++)|x = y = 1] + 3

4 E[addr2|not (x = y = 1)] E[xyz++|not (x = y = 1)]

= 1
4 · 1 + 3

4 · E[addr2|not (x = y = 1)] · 0,

which evaluates to 1/4, not zero.

Question 4

You have recorded the graph of mutual friendships among sixteen people (Alice, Bob, up to Patrick). They cluster
into two groups. Most of the friendships are among people within the same group. Find the two groups. Your
personalized instance is available here.

Your solution should consist of two lists, one for the members in each group (e.g., group 1: Alice, Charlie, Fred;
group 2: Bob, Dave, Eve).

You may use any of the algorithms covered in class or write your own. Explain clearly how you arrived at your
solution. Undocumented computer code will not be entertained as a satisfactory explanation.

Solution: My instance is

. ABCDEFGHIJKLMNOP

A -+--++-+-+++++-

B - -----+-++---++

C +- --++++---+++-

D --- --+--+++---+

E ---- --+-+++----

F +-+-- +-+-+-+-+-

G +-++-+ -+---+---

H -++-+-- -+++----

I +-+--++- -+--++-

J -+-++--+- -+---+

https://andrejb.net/csi4103/hw/25H02.html

K ++-+++-++- +---+

L +--++--+-++ ---+

M +-+--++----- -+-

N +-+-----+---- --

O +++--+--+---+- -

P -+-+-----+++---

with 7 friendships among the groups. I ran 50 rounds of subspace iteration on the adjacency matrix (in which + and
− are replaced by 1 and 0, respectively), initialized with the vectors e1 = (1, 0, 0, . . . , 0) and e2 = (0, 1, 0, . . . , 0).
The algorithm produces two vectors that approximate the top two eigenvectors of the adjacency matrix. Here is
a plot of the second eigenvector:

AB CDE

FGH

IJ

K

L MN OP

This embedding visually splits into the groups B D E H J K L P and A C F G I M N O with precisely seven
friendships between groups.

