CSI 4103 / 5138: Great Algorithms Homework 2 Solutions
University of Ottawa, Fall 2025

Question 1

Let S be the symmetric matrix

(a)

Run power iteration on S with initialization a = (1,0,0). What is the state a5 after five steps? What is the
spectral norm estimate as = ||Sas||/||as||?

Solution: The first five iterates are (0,0,0) — (—.707,0,.707) — (.816, —.408, —.408) — (—.707,0,.707) —
(.816, —.408, —.408) — a5z = (—.707,0,.707) up to three digits of precision. The spectral norm estimate is
a5 ~ 1.732.

Repeat part (a) with initialization b = (0,1,0). How do bs and /5 compare with a5 and a5 above? Explain
the similarities and differences.

Solution: Now the iterates are (0,1,0) — (0,.707,—.707) — (—.408,.816,—.408) — (0,.707,—.707) —
(—.408, .816, —.408) — bs = (0,.707, —.707) and S5 ~ 1.732.

The matrix S has eigenvalues v/3, 0, and —+v/3. Let’s call the corresponding eigenvectors v, vo, and v_

Each iterate amplifies the component of x in the directions of v and v_ in equal measure. The component
in the direction of vy eventually vanishes. The state is evantually dominated by some linear combination
oy \/gthr + a_ (—+/3)tv_ normalized suitably. The values of a; and o_ depend on the initialization, which
explains the discrepancy in the states. The state itself keeps shifting between (multiples of) a4 vy + a_v_
and a4 vy —a_v_, which explains the periodic pattern. The absolute value of the dominant eigenvalues is
V/3, which explains the proximity of both as and 85 to /3.

Now repeat parts (a) and (b) on input S” = S + I, where [is the identity matrix. Explain how the answers
in this part relate to the ones you obtained in parts (a) and (b).

Solution: The new iterates are a = (1,0,0) — (0,0,1) — (.577,—.577,.577) — (.229, —.688,.688) —
(.254,—.763,.594) — c5 = (.218, —.777,.591) and b = (0,1,0) — (0,.894, —.447) — (—.169, .845, —.507) —
(—.186,.808, —.559) — (—.205,.796,—.569) — ct = (—.208,.791,—.575). The iterations now appear to
converge to the same vector (up to sign). At step 10 they match up to three digits of precision: —cyp ~
cho ~ (—.211,.789, — .577).

Adding the identity matrix so S has the effect of shifting all eigenvalues up by one while preserving the
corresponding eigenvector. Thus S’ now has the single dominant eigenvalue 1 + /3 with eigenvector v.

Iterates will eventually converge to v (unless the initialization is exactly orthogonal to it). This is why the
eventual state no longer depends on the initialization, and why the iterates stabilize.

Finally, pick any vector d orthogonal to the output cs from part (c) (when initialized with (1,0,0)). What
happens when you run power iteration on S’ with initialization d? Explain.

Solution: We start with d = (.777,.218,0) and normalize it to length 1. This is orthogonal to c5 at least
up to 3 digits of precision. The first ten iterates d; and the corresponding values r; = ||d;||/||d¢—1|| are

0.777 0.218 O]
0. 0.615 0.789] .709

2 [0.857 0.48 0.189] .920
3 [0.193 0.791 0.58 1 .975
4 [0.501 0.865 -0.015] 1.158
5 [-0.008 0.977 -0.212] 1.786
6 [-0.085 0.872 -0.482] 2.485
7 [-0.179 0.826 -0.534] 2.694
8 [-0.196 0.802 -0.564] 2.727
9 [-0.207 0.794 -0.572] 2.731
10 [-0.209 0.79 -0.576] 2.732

If d was perfectly orthogonal to v, all iterates would belong to the subspace spanned by vy and v_.
Eventually v should dominate as it is associated to the larger eigenvalue 1. At step 3 the norm ratio is
around one, indicating that ds might be zeroing in on vq. This effect, is however, short-lived; d;0 is already
quite close to cqg.

The reason is that, owing to convergence and precision errors, d is not perfectly orthogonal to v4. It has
some small component in the direction of vy : d-vy ~ d-cig =~ .008. Although initially small this component
is amplified by the largest eigenvalue of S’ and eventually dominates d;.

Question 2
Let f(z,y) = ¢(x —y) + ¢(x + y — 1), where ¢ is some “activation function” with one input and one output.
(a) Draw a circuit for f with +, x, and ¢ gates. You may use edge weights for scaling.

Solution:

—

(b) Draw the circuit V f obtained by applying Backpropagation to f. The gates in your circuits should be +,
x, ¢, and ¢’. What is the size of this circuit? What is the depth?

Solution: In this circuit there are gates 0f/0z for every gate z in the circuit in part (a). The circuit is
constructed by applying the chain rule backwards starting from 0f/0f = 1:

of _of T_9f
TUO - 81)1' .8110[1}7»] - avo X¢(u0)
of of of of of

and similarly for vi, u1,y. The resulting circuit is

Vo

Uo

of of
ox oy

This circuit has size 10 (after eliminating gates vg, v1, f) and depth 4. If we did not allow scaling by constants,
there would be an extra 3 multiplication gates that implement these scalings.

Assume now that ¢ is the function ¢(t) = %tQ. Then ¢'(t) = t is the identity function. Simplify the circuit
by evaluating all gates that depend on constants only (e.g., replace 1 x (—3) by the constant —3) and
short-circuiting all ¢’ gates. What is the size and depth of the simplified circuit?

Solution: The ¢’ gates become through connections. The multiplication gates take two arguments one of
which is the constant 1 so they also disappear. The resulting circuit has size 4 and depth 2.

~o
1

Explain how the circuit in part (c) computes the function Vf(x) = AT (Ax + b), where Ax = b is the linear
systemx —y =0,z +y = 1.

Solution: The layer connecting z,y, 1 to ug, u; is inherited from the circuit in part (a). It computes Ax +b.
Without the constant 1 it computes the function u = Ax. The next layer is its mirror image. This is the
function Vf = ATu.

In general, given a linear system with m equations and n unknowns, what is the size, depth, and number of
wires of the output of backpropagation given a circuit for f(x) = 3||Ax — b||? as input? Provide an answer

in big-theta notation and justify it.

Solution: Applying backpropagation to the circuit representation of f, after simplifying, results in a circuit
whose first layer has m plus gates u; up to u,,. Gate u; is connected to input x; by a wire scaled with a;;.
The second layer has n plus gates 0f/0x;. The wire from u; to 0f/dxz; is also scaled by a;;. The size of this
circuit is m + n and its depth is two (O(1) in asymptotic notation).

The number of wires is at most m(n + 1) in the lower and at most mn in the upper one as there can be
a potential wire between every pair of nodes, for a total of O(mn) wires. If A was a sparse matrix with s
nonzero entries, the number of wires would be at most 2s + m.

If we did not allow scaling of the edges, the size of the circuit would grow to O(mn) because each edge would
have to be augmented by a gate that implements multiplication by the resulting constant.

This is why applying Theorem 3 in Lecture 5 gives a circuit bound of O(mn), i.e., the number of wires. The
non-simplified circuit produced by backpropagation contains a multiplication by 0,,[u;] for every addition
gate u;j in f. This is a total of mn multiplications. In our instance, u; are additions, 0y, [u;] is the constant
ai;, and all these multiplications can be replaced by wire scalings, reducing the effective circuit size.

Question 3

A decision tree is a nested if-then-else program that branches over variables and outputs variables or their negations.
For example, the decision tree in Figure [1| evaluates to +1 when the input is x = +1,y = +1, 2 = +1.

(a)

if x
N AN
then if ¥ else — z
o "o
+ —
Re
then z else _,

Figure 1: A function f(z,y, z) specified by a decision tree.

Write the list representation of the function f specified by the decision tree in Figure

Solution: With + and — standing for +1 and —1, respectively, the list representation is

zyz | +++ ++- +-4+ +-— —+4+ —+- ——F ——-—
flwy,2) |+ + — + + — + —

Write the polynomial representation of f. (Hint: For every root-to-leaf path write a polynomial that outputs
the leaf value if this path is taken and zero if not.)

Solution: Every root-to-leaf path can be described by a function that evaluates to its leaf value when this
path is taken and zero otherwise. The point functions describing the three path (in a left-to-right ordering)
are point, | (x,y), —zpoint, _(x,y), and zpoint_(z). f is the sum of these three functions:

f(z,y,z) = point |, (z,y) — zpoint, _(z,y) + zpoint_(z)
1+ 1+y 1+z 1-y 1—2

2 T2 T g try
:%+%x+iy+%z+%x —%xz—i—%yz—i—%xyz.

As a sanity check, the sum of the squares of the coefficients equals one as required by Parseval’s identity.

The depth of the decision tree is the maximum number of nested loops plus one, which equals the length of
the longest root-to-leaf path in the tree representation plus one. For example the decision tree in Figure
has depth three. Prove that for any decision tree, the degree of its polynomial representation is at most its
depth.

Solution: Each path p in the decision tree is labeled by a sequence of variable-value pairs (z1,v1), ..., (€4, vq)
and an output variable y. The function f, =y - point,, , (21,...,74) takes its leaf value when the path is
taken and zero otherwise. This function f, depends on d+ 1 inputs so its degree can be at most d + 1, which
is at most the depth. The decision tree itself is the sum of all such f, so its degree is also at most the depth.

(d) The 2-bit addressing function is the function addry: {—1,+1}% — {—1,+1} given by
addra (2, Y, 244, 24—y 24, 2) = Zgy.

Describe a decision tree for addry. What is the degree of its polynomial representation? Prove both an upper
bound (it is at most ...) and a lower bound (it is at least ... because ...).

Solution: The decision tree reads x, then reads y, then outputs z,,:

T

N

y T Y

g el
+ - +

d ko) o ko)

24+ Z4— Z—+ Z__

The degree of addry is at most 3 as this decision tree has depth 2. To argue that its degree is at least 3 we
can show that the monomial xyz, appears in the polynomial representation of addre with nonzero Fourier
coefficient. This Fourier coefficient is the average of addry times zyz, ;.

This average can be calculated by summing up all 26 = 64 possible assignments. An easier way (if you
know probability) is to apply the law of total expectation: Conditioned on z = y = +1, addry = 244 and
addry - (xyz44+) = 1. Otherwise addrs is conditionally independent of z; 4 and addrs - (zyz4) averages out

to zero.

Bladdry - (oyz4.4)) = 4 Bladdra - (a2 0l = y = 1]+ % Bladdra - (280 (2 = y = 1)
= 1 Elzry - (1-1- 244z = y = 1] + § E[addrz[NOT (¢ = y = 1)] E[zyz, 4 [NOT (z = y = 1)
= 1.1+ 32 .Efaddry|NoT (2 =y = 1)] - 0,

which evaluates to 1/4, not zero.

Question 4

You have recorded the graph of mutual friendships among sixteen people (Alice, Bob, up to Patrick). They cluster
into two groups. Most of the friendships are among people within the same group. Find the two groups. Your
personalized instance is available |here.

Your solution should consist of two lists, one for the members in each group (e.g., group 1: Alice, Charlie, Fred;
group 2: Bob, Dave, Eve).

You may use any of the algorithms covered in class or write your own. Explain clearly how you arrived at your
solution. Undocumented computer code will not be entertained as a satisfactory explanation.

Solution: My instance is

. ABCDEFGHIJKLMNQOP
Attt
- ————— =+t
+— ——ddtb———t -
——— ——t——tt———+
———— ——t—t————

e s Tt
+—tt—t —F———t———
—t—t—— —ttt————
F—tm—tt— ——— -
—t—tt——t— —+———+

o H@m QMmO Qow

https://andrejb.net/csi4103/hw/25H02.html

K ++—+++—++- +-——+
L +——4+——+—++ ———+
M +—t——tt————— —+4-
N +—4—————t———— ——
0 +++——+——+———+— -
P ——4—————ttt———

with 7 friendships among the groups. I ran 50 rounds of subspace iteration on the adjacency matrix (in which + and
— are replaced by 1 and 0, respectively), initialized with the vectors e; = (1,0,0,...,0) and ez = (0,1,0,...,0).
The algorithm produces two vectors that approximate the top two eigenvectors of the adjacency matrix. Here is
a plot of the second eigenvector:

This embedding visually splits into the groups BD EH J K L P and A CF G I MN 0 with precisely seven
friendships between groups.

