CSI 4103 / 5138: Great Algorithms Lecture 2
University of Ottawa, Fall 2025

Gradient descent is a very different algorithm for solving linear equations, and more. It is the main
algorithm responsible for training machine learning models.

Gradient descent is an optimization algorithm. The goal of optimization is to find the best possible
solution among many. How do we phrase solving linear equations as an optimization problem? The idea
is to set up some “loss function” f that penalizes guesses which are far from being correct. The minimum
of the loss function is attained only by the correct solution(s).

Let’s start with a silly but enlightening example. The equation is 2z = 3. We want to cook up a
function f that is uniquely minimized at the solution point = 3/2. What would be the simplest function
with this property? Linear functions won’t work as they get smaller towards one of the infinities. The
next simplest type is quadratic and we are in luck: The function (x — 3/2)? has the solution as its unique
minimizer. (Another option is the piecewise linear function |x — 3/2|. We’ll come back to it later.)

We want to set up f in order so solve the equation 2x = 3. But in order to write up f we had to
figure out the solution 3/2 first. This isn’t as outlandish as it looks. We didn’t really have to solve any
equation. If we “unsolve” it we get (2(x — 3/2))? = (22 — 3)? which is left minus right hand side squared.
This function is minimized precisely at = = 3/2.

To set up a loss function for a problem with multiple constraints like solving a system of equations,
it is natural to add up the losses of the individual constraints. The resulting function will be minimized
exactly when all constraints are satisfied.

To summarize, one loss function for a linear system is the sum of left minus right hand sides squared.
This is called the sum of squares loss. For last lecture’s example,

r—3y—3z=-5

r—2y—22=0 (1)
r+y—5z=3
the sum of squares loss is
fa,y,2) = (= 3y — 32+ 5)* + (z — 2y — 22)° + (z +y — 52 — 3)”. (2)

It is useful to think of (x,y,z) as the position of a particle. Gradient descent starts with this particle
somewhere, say at (0,0,0), and keeps moving it in a direction in which the sum of squares loss decreases.
When it is convinced that no decrease is possible it declares that the minimum has been found. The name
of the algorithm comes from direction of motion: the gradient of f, with a minus sign in front.

1 Gradient descent

Let’s start with f(z) = (20 —3)2. The gradient of a univariate function is the derivative df /dx = 4(2z — 3).
Here is a plot of —0.05 - df (x)/dx at various points along the curve (x, f(z)):

—

> T

1 2 3

All arrows point towards the minimum. This suggest we should move x by —0.05 - df () /dz units in each
step. If the particle is initially at © = 0 it will trace this path on the graph (z, f(z)), eventually reaching
close to the minimum at z = 1.5.

)

N

1 2 3

> T

This is the gradient descent algorithm. The gradient of an n-variate function f(x) = f(z,y,...,z) is the
vector of partial derivatives Vf = (0f/0x,0f/dy,...,0f/0z).

Algorithm GD (Simple Gradient Descent)
Input: A function f with multiple inputs.

1 Choose a starting point x = (z,y, ..., 2).
2 Choose a rate p > 0.

3 Until x is sufficiently small,

4 Move x to x — p - V f(x).

Gradient Descent is different from Gaussian Elimination in many ways. The first glaring difference is
that it is not “set in stone”: We need to choose the initial x in line 1 and the rate p in line 2. The rate
controls the speed of motion. Set it too small and the particle will take forever to budge. Set it too high
and it will go in the wrong direction! Had I chosen a rate of 0.255 instead of 0.05 this is the path it would
have followed:

Even if the parameters are chosen well, Gradient Descent never quite arrives at its destination. In line
3 we have to decide when to declare victory. There are guidelines that might govern these choices but it is
difficult to get a feel about Gradient Descent without some trial and error. Let’s see what happens when
we apply it to system (1).

The first task is to calculate the gradient of the square loss. Applying the usual rules from calculus,

Of/0x=2-(x —3y—32+45)+2-(x —2y—22)+2(x+y—5z—3)
ofJoy=2-(-3)(x —3y—32+5)+2-(=2)(x -2y —22)+2- (x+y—5z—3)
0f/0z=2-(=3)(x —3y—32+5)+2-(=2)(x —2y —22) +2- (=5)(x +y — 5z — 3).

Each partial derivative is a linear combination of the equations, with the coefficient equal twice to the one

in front of the corresponding variable. This can be written succinctly in matrix notation. If the system
has the form Ax = b and f(x) = ||Ax — b||? then

Vf(x) =247 (Ax —b), (3)

where AT is the matrix transpose of A. (Later in the course we will derive this formula as an instance of
backpropagation.) Now we can start playing.

Let the olympic games begin!

We first need to initialize x. It is reasonable to expect that the closer we start to the minimum the faster
we will get there. From last week’s problem formulation we know that the variables represent people’s ages
so they should not be negative or too large. Let’s set the initial x to (0,0,0).

How about the rate? Let’s try to get a sense of scale. The rate is the multiple of the gradient
by which the particle moves. The solution should be single or double-digit numbers, which suggests
that the rate should be roughly inverse-proportional to the norm (the length) of the gradient. We can
get a rough estimate by evaluating the gradient at the initial point. In our example, formula (3) gives
V£(0,0,0) = 2A7b = (—4,36,0)”, which has norm about 36. This suggests p ~ 1/36 ~ 0.03.

A few trial runs reveal that gradient descent diverges on system (1) with p = 0.03, but seems to make
progress when p is set to 0.02. Here are the first ten steps:

step x root (f (x))
1 . [0. 0. 0.] 5.831
2 [-0.08 0.72 0. 1 3.937
3 [-0.035 1.024 -0.262] 3.178
4 [-0.052 1.249 -0.205] 2.912
5 [-0.008 1.327 -0.314] 2.822
6 [-0.004 1.403 -0.265] 2.788
7 [0.038 1.422 -0.311] 2.771

57 1.451 -0.278] 2.760
91 1.457 -0.297] 2.751
114 1.471 -0.275] 2.742

: [0.0
9 : [0.0
10 : [O.

The particle moves rapidly in the first two steps but then progress slows down. It takes a long time for
it to get close to the target solution (10, 3,2).

step X root (£f(x))
200 : [4.26 2.113 0.674] 1.592
400 : [6.761 2.5 1.2562] 0.898
600 : [8.172 2.718 1.578] 0.507
800 : [8.969 2.841 1.762] 0.286
1000: [9.418 2.91 1.866] 0.161
2000: [9.994 2.999 1.999] 0.002

Gradient descent looks very fickle, and takes thousands of steps to complete what an average sixth-
grader can do in five minutes. Is it worth the trouble? Absolutely!

2 Gradient Descent fast and slow

Analyzing gradient descent is tricky. Fortunately we can learn quite a bit by looking at the one-variable
equation ax = b. To visualize more easily let’s assume that a and b are positive.

The most pressing question is why Gradient Descent works at all. The proof by picture from Section 1
should be convincing enough but let’s try to quantify which rates p result in convergence. There is some
precise value p* at which the particle keeps bouncing between two points on the curve:

\ /

x b/a

We can find p* by solving an equation. The displacement between these two points is 2(b/a — z). Gradient
Descent moves x by —p - df (z)/dx = —p - 2a(ax — b), so p* must be the value of p at which these two

expressions are equal, namely
« 20b/a—z) 1

~ —2a(az —b) a?
As long as p < 1/a?, Gradient Descent will make progress.

To say something similar about general systems we need a single number that measures the “magnitude”
of the matrix A. This is the spectral norm ||Al|. As long as p < 1/|/A||?, Gradient Descent is guaranteed
to make progress. We’ll define and explain the spectral norm shortly.

The next question is how fast this convergence is. How much closer to the minimum does each step
take us? If the particle moves from x to z/, then

¥ =x—p-2a(ax —).

This equation homogenizes to 3 = (1 — 2a®p)y for y = ax — b, y = ax’ — b. The values y and 3/ are the
square roots of the loss before and after a step of Gradient Descent. In each step this root-loss shrinks

by a factor of (1 — 2a%p), that is at an exponential rate as long as p is bounded away from 0 and 1/a?.
Exponential convergence rates are very desirable. They mean that every few steps we get closer to the
solution by an extra digit of accuracy.

The picture is more complicated for more equations and more unknowns. Assuming p < 1/||A||?, if our
initial guess is at distance d from some solution to Ax = b, it is known that

d2
(1= pllAf2)pt

The upper bound on the right guarantees progress, but at a merely inverse linear rate 1/¢t. (The rate
becomes worse as p approaches the boundaries 0 and 1/||A||2.) This is a far cry from the exponential
convergence in univariate systems.

How does this square with our experience so far? In example (1), ||A]| is about 6.58. This suggests
choosing a rate p between 0 and 1/6.58% =~ 0.023. Our choice p = 0.02 just about fits the requirement.
The squared distance d? between our initial guess (0,0, 0) and the solution (10, 3,2) is 10> 432422 = 113.
Formula (4) guarantees sum of squares loss rate at most about 42053/¢. It is more natural to look at its
square root which is the norm of the error vector. It should be at most about 205/+/¢. Let’s compare this
upper bound to our experiment.

f(x¢) = sum of squares loss after ¢ steps <

(4)

T T I I
20 upper bound ||
——root loss 11 |
15 :
0 [-
10 - 8
1L i
5 [|
¥ log,y upper bound
ol 4 —2||—1log;, root loss a
| | | | | | | | | | | | |
0 500 1,000 1,500 2,000 2 22 24 26 28 3 32 34
steps log, steps

FIGURE 1: Loss as a function of time at (a) regular (b) log-log scale.

In the left plot x-axis is the step ¢, the blue line is the root loss 4/ f(x;), and the orange line is the
root of the upper bound on the right-hand side of (4). The algorithm does quite a bit better than the
bound. (I am not sure why; this could be another good project.) Both curves have a similar shape. To get
more detail, the right plot displays the same data at log-scale. The upper bound in (4) is on the order of
1/y/t =t"1/2. The exponent —1/2 is the slope of the orange line on the right. The blue line has the same
slope initially, suggesting convergence at rate 1/+/t, but takes a plunge around step 10%¢ ~ 400. Why does
this happen?

3 The spectral norm and the condition number

To understand this phenomenon we must look beyond one equation in one unknown. The next simplest
type of instance is two equations in two unknowns. Take a look at these two systems:

r+09-y=1 09-z+y=1
S Y and T: Y
z+11-y=1 11l-z24+y=1

Systems S and T look very close. Their right-hand sides are identical, and all the coefficients are close.
Their solutions, however, are dramatically different: S has x = 1,y = 0 as its unique solution, while
in T the roles are reversed: * = 0 and y = 1. If two systems of equations are “close” it doesn’t mean
that so must be their solutions. Yet Gradient Descent (unlike Gaussian Elimination again) is a “smooth”
algorithm: If we slightly perturb the instance, it should take many steps for the particle to notice. When
does this happen?

Suppose our initial guess for a solution in S is (1/2,1/2). The actual solution is x* = (1,0). We can
write a matrix-vector recurrence like in the one-variable case. The gradient descent update rule is

x' =x — pVf(x) = x — 2pAT (Ax — b).
Substituting b = Ax* and subtracting another x* from both sides gives
x —x* = (x —x*) — 2pAT A(x — x*)
Using I to denote the identity matrix, we can factor the right-hand side to obtain vector recurrence
x' —x* = (I - 2pAT A)(x — x*).

In each step, gradient descent moves x by a “factor” of I — 2pA” A towards the solution x*. The spectral
norm of this factor governs the rate of convergence.

This is a good time to talk about spectral norm. The spectral norm of a matrix B is the maximum
amount by which it can stretch a vector, namely

BVl
vl
If the spectral norm is less than one then B shrinks every vector. If it is at most 0.9 then every vector
shrinks by a factor of 0.9. If we apply B again it shrinks 0.92 = 0.81 times. If we apply B a hundred times
it shrinks 0.91% ~ 0.00002 times, a tiny number.
Let’s write down the matrix B = I — 2pAT A for the system S:

(1 0.9 _[1—-4p —4p
A_L 1.1} 7 B_[—élp 1-4.04p]| "

| B = maxyxo

The spectral norm of B is about 1 —0.02p. We will learn how to calculate it next time. Initially, x — x* =
(1/2,1/2)—(1,0) = (—1/2,1/2) which has norm about 0.707. After ¢ steps, x and x* are (1—0.02p)*-0.707-
close. If we set p = 0.2, an acceptable rate (less than 1/||A||? ~ 0.25), x and x* would be guaranteed to be
within 0.1 after 500 steps. Indeed x500 = (0.932,0.068), which is 0.096-close to (1,0). The spectral norm
of B looks like an excellent predictor of convergence speed.

Where did the factor of 0.02 come from? Here is a “pattern-matching” explanation. The spectral norm
of B=1-2pAT A is about 1 —0.02p = 1 — 2p - 0.01. There is a 2p in both expressions, the 1 is comes
from the identity matrix, so 0.01 must be the contribution of A.

The matrix A is close to the all-ones matrix. If A were the all-ones matrix, its rows would be linearly
dependent, there would be many solutions, and it would be hopeless to expect convergence to any particular
x*. The only possible explanation is that the contribution of the all-ones matrix is zero. Any matrix with
linearly dependent rows contributes zero. The the condition number of a matrix measures how close it is
to having linearly dependent rows. You will investigate it in Homework 1. Here is a summary of all this
nonsense.

Theorem 1. If A is a square matriz with linearly independent rows, p < 1/||A||?, after t steps with initial
guess x, the state x; of gradient descent satisfies

—11t
e — x| < |1 = 2p - [JAIPRTH - flx = x7]],

where X* is the unique solution to Ax* = b, and k is the condition number of AT A.

The key feature of this theorem is that gradient descent closes in on the solution at a rate inverse
exponential in the number of steps ¢t. This exponential accounts for the drooping shape on the curve in
Figure 1. (Assuming a rate of about 1/||A||?, the condition number controls the base of this exponent.) In
contrast, (4) only guarantees square loss rate that is inverse linear in t.

If Theorem 1 is so much better than bound (4) why did we bother with (4) at all? Actually the two
bounds are hardly comparable. Equation (4) bounds the rate of decrease of the sum of squares loss f(x),
but it tells us little about how good the solution x is. For example, after running gradient descent on S
for 100 steps (with the above parameters), /f(x100) is 0.048. This looks great! But the corresponding
solution is x199 = (0.664,0.334), which is a long way from x* = (1,0).

On the other hand, if the system happens to be underdetermined—say we have 10 unknowns but only
7 equations—then Theorem 1 does not apply because x* cannot be uniquely defined. Bound (4), however,
is relevant. It tells us that eventually the system will be almost solved by gradient descent. It doesn’t say
which of the many candidate solutions the algorithm picks. This is not a bug but an important feature of
gradient descent. By adding extra terms to the “objective” f we can guide gradient descent to favor some
solutions over others, for instance ones that tend to be short. We’ll explain why this is useful in Section 6.

4 Linear regression

Gaussian Elimination struggled mightily with data analysis. This is where Gradient Descent shines. Let’s
try it to infer grade weights from student marks on the same data:

h m P f
Alice 87.78 96.67 80.00 &7.33
Bob 100.83 100.00 95.00 98.25
Dave 84.44 76.67 80.00 80.33
Charlie 48.89 86.67 72.50 69.67
Eve 84.72 96.67 85.00 88.42

The initial guess is that all three components weigh equally: x = (1/3,1/3,1/3). As for the rate,
the data is at the scale of hundreds, so we might expect p to be some small multiple of 1/1002. With
p =0.05-(1/100)? the result is

step x root (f(x))
1000: [0.31 0.32 0.368] 0.333
2000: [0.305 0.31 0.385] 0.161
3000: [0.302 0.305 0.393] 0.078
4000: [0.301 0.302 0.397] 0.038
5000: [0.3 0.301 0.398] 0.019

This is a very close approximation to the actual grade weights (0.3,0.3,0.4)! Let’s do another exper-
iment. When the data was rounded to the closest integer, Gaussian Elimination produced a very poor
answer. Here is how Gradient Descent performs on the rounded data:

step x root (f(x))
1000 : [0.287 0.32 0.387] 0.608
2000 : [0.279 0.305 0.413] 0.415
3000 : [0.275 0.297 0.425] 0.355
4000 : [0.273 0.293 0.431] 0.339
5000 : [0.272 0.291 0.434] 0.335

This doesn’t look bad at all. There is a reason behind it. Among all algorithms you could try, Gradient
Descent is guaranteed to give the best possible approximation, the one that minimizes the sum of squares
error. Theorem 1 generalizes to Theorem 2:

Theorem 2. For any matriz A, p < 1/||A||?, after t steps with initial guess x, the state X; of gradient
descent satisfies
Ixe = x| < (1 =2p- &7 1) x —x7,

assuming x* is the unique input that minimizes f(x*) = || Ax* — b||%.

A linear system that has more linearly independent equations than unknowns is called overconstrained.
Taken literally such systems have no solutions. Yet solving them is a pressing need in data analysis and
machine learning. The price of a house is likely to depend on the square footage, the median income in the
neighborhood, and years since the last renovation. We do not expect it to be an exact linear combination
of those three numbers. Nevertheless, a retail agent might still want to model

price = x - footage + y - income + z - years + noise.

This data-dependent noise could be very large. We should expect it to be large for such a simplistic model
of the property market. Nevertheless, Gradient Descent produces the model (z,y,z) that minimizes the
average square noise based on available data.

If this model makes lousy predictions it is not because Gradient Descent underperformed. It is the
model’s fault. To improve predictions we should consider adding variables (turnover rate, distance to
subway) or look into more complex, nonlinear models. A surprising discovery of modern machine learning
is that “fine-tuned” variants of gradient descent are just as effective on complex nonlinear models.

5 Variants and applications

Yet another way in which Gradient Descent differs from Gaussian Elimination is that it its performance is
highly dependent on the input. Input parameters like the spectral norm and the condition number greatly
affect its rate of convergence. These parameters can sometimes be as hard to estimate as solving the system
itself. Testing the algorithm with different initializations and rates can be helpful in figuring out what is
best for a given input. A natural extension of GD picks the rate adaptively depending on the state:

Algorithm AGD (Adaptive Gradient Descent)
Input: A function f with multiple inputs.

1 Choose a starting point x = (z,vy,...,2).

3 Until x is sufficiently small,

2 Choose a rate p depending on x, Vf(x), f(x), and the previous value of p.
4 Move x to x — p - V f(x).

There are several reasonable rules for picking the rate. In steepest descent p is chosen to minimize the
target ||x—p-V f(x)|| among all possible choices of p. The advantage is that progress towards the minimum
in any given step is as good as it can get. The disadvantage is that finding the best possible p requires
time-consuming calculations. Another variant called conjugate gradient descent reduces the dependence on
—1/2 and is guaranteed to terminate in n steps (assuming « is finite).

To further improve convergence, it is sometimes possible to apply a transformation on the rows of the
original system to make them less dependent and thereby decrease the condition number. The transfor-
mation has to be simple enough so that one can easily recover the solution to the original system from a
solution to the transformed one. This is called preconditioning.

Gradient descent interacts with its input only by evaluating the gradient 2A7 (Ax—b) = 247 Ax—2A"b.
It is effectively solving the system Sx = ¥/, with S = ATA and b = ATWH. Matrices of the form AT A
are called symmetric positive semidefinite (PSD). There are many applications in which the input itself is
already of this type. Gradient descent tends to be a lot more efficient on PSD inputs.

the condition number from ! to k

Unlike Gaussian Elimination, Gradient Descent is friendly to sparse matrices. Gradient calculation can
be implemented in time proportional to the number of nonzero entries of the input matrix. This can be a
dramatic speedup in some applications.

Fairly recently, theorists developed ingenious algorithms for an important class of positive semidefinite
systems called Laplacians. Laplacian systems come up in calculating the hitting time it takes a random
walk to reach one graph vertex from another, for example how many steps it would take you to reach my
web page if you surfed the internet at random. Hitting times measure how important a given connection is
in a computer network. These fast Laplacian solvers tread close to the limit of algorithmic efficiency. Their
execution time is only a few factors larger than the time it takes to read the matrix, at least in theory. Their
implementation and analysis uses all of the above ideas (conjugate gradients, sparsity, preconditioning),
and then some.

Finally, a simple twist on Gradient Descent is quite effective in machine learning applications. Owing
to the humongous number of parameters in modern machine learning models, the matrices there can be
very large. Evaluating the gradient can be a significant bottleneck. In this context rows of matrices
represent data records like the grades of a student. Instead of evaluating the gradient exactly we can try
to approximate it using just a small subsample of the records. This variant is called stochastic gradient
descent.

6 The unreasonable effectiveness of Gradient Descent

The spectacular success of modern machine learning probably comes from a confluence of several innova-
tions: Data availability, extensive and cheap processing power, painstaking trial and error. Yet the one
truly indispensable algorithm that powers it all is gradient descent. The latest models for object recog-
nition, language translation, and chatbot interaction are all trained with gradient descent. How can an
algorithm designed for solving 2x + 3 = 7 be so powerful?

The reason is that a great many problems from all walks of engineering, science, and life can be turned
into minimizing some objective function. It is not guaranteed that gradient descent will succeed on them
but it can at least be attempted and played with. This paradigm has been especially effective in modern
machine learning.

f ({If) g ()

1 2 3 -2 -1 1 2

FIGURE 2: Non-convex functions. (a) f(z) = 1 — e~*: The average of f(1) and f(3) is
smaller than the value f(2) at the midpoint. Gradient descent can get stuck on the flat part.
(b) g(z) = (2% — 1)? — 0.12: Gradient descent could converge to the local minimum r_ ~ —1
or to the global one x; ~ 1 depending on the choice of initialization.

For starters, the gradient descent strategies we discussed generalize almost verbatim to any convex
objective function. A function is convex if the averaging two evaluations is never smaller than evaluating
the average. For example, 22 and |z| are convex, but 1 — e~* and (z2 — 1) are not. A consequence
of convexity is that not only is there a unique minimum but the gradient always points towards it.!

!For the math nerds: If the function is not differentiable a generalized subgradient can be defined.

Bound (4) and Theorem 2 apply to any convex f for a suitable generalization of “spectral norm” and
“condition number”.

A fantastic feature of convex functions is that they can be added together. This is incredibly useful
for model selection. Suppose you want to build a linear model but don’t have enough data. This is the
problem of owerfitting. There are many models consistent with the data so which one should you trust?
A reasonable strategy is to select the one that least complex by some criterion. If this criterion is convex,
gradient descent can handle it. A common complexity measure for solutions to linear systems is the sum
of magnitudes, namely g(x) = |z| + |y| + - -- + |z|. At the very least it rules out solutions with unusually
large numbers, like one that predicts the weight of the homeworks in the final grade is 157.

One surprising more recent realization is that gradient descent is often effective even for non-convex
optimization. On non-convex instances gradient descent could converge to a local minimum that is not the
true, global minimum, or it might not converge at all (see Figure 2). Not only is there no guarantee that
it will succeed, but it is sometimes even hard to interpret if the outcome was a success or a failure. Yet
highly non-convex complex machine learning models are successfully trained using gradient descent every
day. It remains a great challenge for theorists to explain why gradient descent works so far beyond the
humble problem that it was designed for—minimizing sums of squares.

10

	Gradient descent
	Gradient Descent fast and slow
	The spectral norm and the condition number
	Linear regression
	Variants and applications
	The unreasonable effectiveness of Gradient Descent

