CSI 4103 / 5138: Great Algorithms Lecture 4
University of Ottawa, Fall 2025

The Fourier transform is a conversion between two representations of a function: the list representa-
tion and the polynomial representation. Let’s start with functions over the n-dimensional Boolean cube
{=1,+1}". Its inputs are all 2" bit strings of length n. We’ll represent bits by the numbers +1 and —1.
Here are three examples:

e The sum of two bits sumg(x1, x2) is

sumg(—1, —1) = =2, sumg(—1,+1) =0, suma(+1,—1) =0, sumg(+1,+1) = 2.

e The maximum of two bits maxa(xy, z2) is

maxg(—1,—1) = =1, maxy(—1,+1) = +1, maxy(+1,—1) = +1, maxy(+1,+1) = +1. (1)

e The majority of three bits majs(x1, xe, x3) given by

majs(—1,—1,—1) = —1, majs(—1,—1,+1) = —1, majs(—1,+1,—1) = —1, majs(—1,+1,+1) = +1
majs(+1,—1,—1) = =1, maj;(+1,—1,4+1) = +1, majs(+1,4+1,—1) = +1, majs(+1,+1,+1) = +1.

These are the list representations of maxs and majs;. Any function on n-bit inputs can be defined by listing
its 2" evaluations in some predetermined order. It can also be specified as a polynomial:

sumy(x1, r2) = x1 + T9
maxy(z1, z2) = % + %:cl + %332 - %9311:2 (2)

. 1 1 1 1
majs (21, T2, 3) = 571 + 502 + 523 — 5T1T2T3.

The monomials that are used to built up these polynomials are the 2™ parity functions 1, z1, 3, 122, T1T2T3,
and so on. Every function f(xi,...,z,) can be uniquely represented as a linear combination of the 2"
possible parities in variables x1 up to .

The parities are indexed by the set S of variables that participate in it, e.g., z1x3 is indexed by the
set {1,3}. We can also write down the polynomial representation by listing all 2" coefficients f(S) of the
parities, for example

smna(2) =0, sumo({1}) =1, sume({2}) =1, sumy({1,2}) =0,

maxy(2) = 5, maxe({1}) =3, @man{2})=j, max({l,2}) = -3
and
majs(2) = 0, majs({1}) = 3 majs({2}) = 3 majs({3}) = 3
majs({1,2}) =0,  majy({1,3) =0,  maj;({2,3}) =0,  majy({1,2,3}) = -1

These are the Fourier representations of sumsy, maxs, and majs, respectively. The Fourier transform is the

conversion from the list representation of f to the Fourier representation f.
This variant of the Fourier transform for functions over the Boolean cube is sometimes called the

Fourier-Walsh transform. We’ll talk shortly about functions over other domains.



1 The mathematics of the Fourier transform

Algebra

The polynomial representation of sums was easy to figure out. After all sums is defined to be the sum of
its two inputs 1 and z2. But how did I calculate the Fourier transforms of maxs and maj;? The key fact
is that any function is a linear combination of point functions point,, namely functions that evaluate to
one at a specific input x = a and zero at all other inputs x # a.

For example, the maxy function is a linear combination of the four point functions point_; i),
point(_; 41y, point(y; ;) and point,; ;) with coefficients

maxp = —1 - point(_y _q)+1-point_; 1y+1-point 4 3y +1-point iy 4qy- (3)

When we evaluate both sides at an input x, say x = (—1,+1), only the corresponding point function
point(_; 41)(x) does not vanish. We can read off the value maxs(z) from its coefficient. This is precisely
the list representation of maxs, only written in different notation.

All we have to do now is figure out the polynomial/Fourier representation of the point functions. Once
we have those we can add them up. The advantage of working with point functions is their multiplica-
tivity. For example point(_; i q)(21,22) = point_;(z1) point, ;(x2). We reduced the problem to finding a
polynomial for the univariate point function point,(z) (when a and x are single bits). This is the linear
function

_l+ax

point, (z) = 5

When a and z are equal, both sides are (1 + 1)/2 = 1. When they are different, they are (1 —1)/2 = 0.
By multiplicativity,

1+a1zy 14 asxo

point,, ., (x1,22) =

2 2
and all we have to do is plug this into (3)
1—21 1—129 1l—21 142 1+x21 1—129 1+z1 1429
=1 . 1. . 1. . 1- . .
maxa(x1, x2) 5 5 + 5 5 + 5 5 + 5 5

and simplify to obtain formula (2).
This strategy works in general: The polynomial representation of a point function given by its 2"
evaluations f(a) as a ranges over {—1,+1}" is obtained by simplifying the expression

f(x) = Z f(a) point, (x) = Z flat, ... an) - 1 +;11331 1 —i—;lnxn' @

ac{—1,+1}» at,...,an€{—1,+1}

Formula (4) gives one method of expanding f as a polynomial in its variables. Could other methods give
different answers? Luckily, it turns out not: The polynomial representation in (4) is unique.

Geometry

To understand why we need to think geometrically. It helps to step back and look at functions f of a
single variable (n = 1). Such a function is specified by its two evaluations f(—1) and f(1). These can
be combinded into the vector (f(—1), f(1)), and f is uniquely identified by this vector. For example, the
function f(z) = 1 — % is represented by the vector (3/2,1/2). The point functions are then the standard
basis vectors point_; = (1,0) and point,; = (0,1). In our example

f*§ int —i—1 int _3 1—i—1 v
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The parities 1 and = are themselves represented by the vectors (+1,41) and (—1,+1). The polynomial
representation of f is merely an expansion of the same vector f in this basis:

1 1] 1 [-1
= ]_ . 1 —_ = ]_ . —_ = .
! 9 7 [+1] 2 [+1]

The Fourier transform itself is nothing but a change of basis: It converts from a representation of f in the
standard basis point_;, point,; to a representation in the parity basis 1,z (see Figure 1).

x 1

s

N
B

FI1GURE 1: The Fourier representation as a change of basis.

The function maxy is specified by four values, so its list representation (1) is the 4-dimensional vec-
tor (—1,41,41,+1). This vector can no longer be visualized but the logic is the same. The standard
basis vectors corresponding to the four coordinates are the point functions point_; 1) = (1,0,0,0),
point(_y 41y = (0,1,0,0), point 4 _1y = (0,0,1,0), and point_; ;) = (0,0,0,1) and

-1 1 0 0 0
+1 0 1 0 0
maxg = 41 =-—1- 0 +1- 0 +1- 1 +1- 0
+1 0 0 0 1

The polynomial expansion (2) represents the same vector in a different basis: the basis of parity
functions 1 = (+1,+1,+1,4+1),2; = (—1,—-1,4+1,+1),20 = (—=1,+1,—1,+1), 120 = (+1,—1,—1,+1).
Expression (2) is now the representation of maxsy in this basis:

—1 +1 -1 -1 +1

1 1 1 1 |-1 1 1 1 (-1
+1 2 |+1 2 |+1 2 |-1 2 |1
+1 +1 +1 +1 +1

From a geometric point of view, the Fourier transform in any dimension is merely a change of basis
formula. It converts from the the standard representation of f as a linear combination of the 2" point
functions point_; _; _j,point_; 4  44,...,pointy y 44 to the polynomial representation of f as a
linear combination of the 2" parity functions

parity, = 1, parity ) = @1, parity oy = 2, parity gy oy = 2122, . . ..

As the dimension of both bases is the same and we have conversion formulas in both directions, linear
algebra tells us that the parities must be linearly independent and therefore produce a unique Fourier
representation.

If you did not follow this argument do not despair because geometry reveals a much more interesting
reason behind the linear dependence of the parities: They are mutually orthogonal. When n = 2, for
example, the dot product zy - (z122) = (—1,+1,—1,+1) - (+1,—1,—1,+1) evaluates to zero. The same
goes for the other five pairs of parities. There is an algebraic reason behind these cancellations: The dot
product x; - (x122) is the sum of the products of the corresponding entries

x1 - (r129) = Z ai(arag) = Z a%ag = Z as =0

ai,a2 ai,a2 ai,a€{—1,+1}



and the x1-part cancels out because 2 = 1. This is where the cumbersome representation of bits by —1s
and +1s pays off: When we evaluate the dot product of any two distinct parities, we sum up the evaluations
of a third parity. This third parity keeps shifting between —1 and +1 and is therefore zero.

Lemma 1. The 2™ parity functions are mutually orthogonal when viewed as 2"-dimensional vectors.

Orthogonality in particular implies linear independence, but it tells us much more. First, the Fourier
coefficients f(S) must equal the projections of f onto the parity determined by S. For example
maxy -xy  (—1,—-1,—1,+1) - (=1,4+1,-1,+1) 2 1

max 2 = T, e -1, 41,1, + D 472

Probability

The last expression has a probabilistic interpretation: It is the average of the values obtained when f is
shifted by the parity xix3. In general,

. 1
f(S) = average value of (f - parityg) = on g f(a) parity g(a). (5)
ac{—1,41}7

When S is the empty set, parity, = 1, so f (@) is nothing but the average value of f. For example,
maxg(&) = (-1 —-1—-141)/4 = 1/2. If we had to summarize all of f by one number, this would be it.
What do f({1}) and f({5,7}) tell us? We'll come back to this and more shortly. But now that we have a
formula let’s talk about algorithms.

Computation

Computing the Fourier Transform means taking the list of 2" values f(a) and producing the list of 2"
Fourier coefficients f(5). Both the input and output have size N = 2™ so it makes sense to express the
complexity in terms of this N. Evaluating (5) would entail N2 operations: It takes N = 2" additions to
calculate each Fourier coefficient and there are N = 2™ of them to calculate.

There is a faster recursive algorithm. It is easiest to describe it in the language of polynomials. Suppose
that we have figured out the polynomial representations of the functions

f-(x1,...,p_1) = f(a1,.. . 21, —1) and fe(xy, . o epa1) = flar, .o 21, +1).

How can we combine them into a single polynomial representation of f? What we want f to do is produce
f-(z1,...,2p—1) when z, is —1 and fi(x1,...,2,—1) when x, is +1. We can resort to a tried and tested
trick: Write f as a linear combination of two point functions.

[ = f--point_;(z,) + fy - point {(xy)

B 1—x, 1+,
= f- 5 + fy 5

= SU + 1)+ (e = ),

The term %( f+ + f—) contains those monomials that exclude z,,, while the term %( f+ — f—) contains those
monomials that include it. The corresponding formula for the monomial /Fourier coefficients is

F(8) = 5(f+(8) + f-(S5)) and f(su{n}) = %(ﬂ(s) - /-(5)) (6)

for every subset S of {1,...,n—1}.



Algorithm FFW (Fast Fourier-Walsh Transform)
Input: A list representation of f: {—1,+1}" — R.

1 If n =0, output the value f().

2 Calculate fy = FFW(fy) and f_ = FFW(f_).

3 Combine f; and f_ into f using (6) and output it.

The correctness of the algorithm follows from induction by (6). The base case n = 0 holds because a
function with no inputs is a constant, so its list and Fourier representations are identical.

Here is an example run of FFW when f = maxs. The algorithm needs to calculate the Fourier-Walsh
transforms of fi = maxg(z1,1) and f- = maxg(xy,—1) first. f; decomposes into fy1 =1 and fi_ =1,
obtaining fi = 3(fiy + f+-) + 3(f4+ — f+—)21 = 1. It similarly obtains f_ = 21. In step 3 they are
combined into

f=5(fr+ )+ 3(f+ = f)me =30 +a1) + 5(1 — 21)we = L + o1 + 32 — Sa1732.

The complexity of FFF'W can be estimated by solving a recurrence. Let T'(n) be the number of operations
(additions, subtractions, halvings) it takes to calculate an n-variate FEFW. FFW solves an n-variate problem
by splitting it into two n — 1-variate ones (step 2) and then combining their answers. Combining takes two
operations per subset S in (6) for a total of 2" operations. Thus T'(n) equals 2T(n — 1) plus 27, with base case
T(0) = 0. This solves to T'(n) = n - 2", which is the same as N log N. This is a huge improvement over N2.

2 Polynomials, complexity, and approximation

A key goal of the theory of computation is to characterize the computational complexity of various functions that
come up. The Fourier representation is sometimes a helpful indicator of complexity.

One natural complexity measure of a polynomial is its degree. Low-degree polynomials have relatively few
“degrees of freedom.” A linear function over the n-dimensional Boolean cube is completely specified by its mean
f(2) and its n level-1 Fourier coefficients f({1}),..., f({n}). More generally a degree-d polynomial is determined by
its Fourier coefficients of size d or less. There are at most 277 (%/?) of them, where H(p) = —plogp— (1 —p) log(1—p)
is the binary entropy function. When d is smaller than n by some factor this is much less than the 2™ values it takes
to specify the function as a whole.

The compactness of polynomial representations can be exploited by algorithms. Suppose we are given input-
output examples (z, f(x)) for some unknown function f. If f is a degree-d polynomial we can try to reconstruct
the polynomial representing f by interpolating its Fourier coefficients from these examples. This amounts to solving
a linear system, which can be accomplished in time polynomial in 2"(4/") provided there are sufficiently many
linearly independent equations in the system.

Some simple types of computations are naturally captured by low-degree polynomials. As an example, the
function

f(z,y,2) = “if x =1 then y else 2”

has degree 2. It is unlike the 72% of the other Boolean functions on 3 inputs whose degree is 3. It has degree 2
because all point functions that show up in its list representation

1+ 1—=z

f =y pointy (z) + z - point_,(z) =y - 5 +z- 5

have degree 2 or less.

A decision tree is an arbitrary nested if-then-else program of this form. The depth of the decision tree is the
number of nested levels plus one. By the same reasoning any depth-d decision tree is a degree-d polynomial. Because
it is a low-degree polynomial, some algorithmic tasks such as learning from random examples are easier for decision
trees than for more complex functions.

A more complex type of function is a formula in disjunctive normal form, namely an AND of terms, each of
which is an OR of literals (variables or negated variables) such as

(x AND (NOT y) AND z) OR (z AND w) OR (u AND w AND (NOT z)).



Terms could represent qualification requirements. For example a student is eligible for a scholarship if they are in an
upper year and in CS and have a GPA of 3 or more, or if they are Francophone and do not live too close to home, or
if they are not in an upper year but won a contest. Such formulas do not have a low-degree representation. It turns
out, however, that they can be “approximated” by polynomials of fairly low degree.

To illustrate how this works let’s look at the formula

f = (x1 AND x2) OR (23 AND x4) OR (z5 AND Zg).
Its complete polynomial representation is too long to write down. The lowest two levels are
f=—.15625+ .28125(x1 + x2 + x3 + x4 + x5 + x6) + higher order terms.

What if we discard the higher order terms? Let’s start with the single degree-zero term f(&) = —.15625. This is the
mean value of f. Suppose we used this constant f () as an approximation of f(x). This approximation is not too
good. f evaluates to —1 or +1 on every input, and f(@) is quite far from both —1 and +1.

This approximation, however, is best possible on average among all constants c. The Fourier coefficient f (@)
minimizes the average of (f(x) — c)?. Moreover, there is a formula for this minimum square average error. It is
precisely 1 — f (@)?2, which is about 0.975 in our example. If we want a decent approximation we have to look beyond
constants.

Let’s now include the degree-1 parts of f in the approximation. We obtain the linear function

Z(X) = f(@) + f({l})$1 + -+ f({ﬁ})iﬁ(; = —.15625 + 28125(%1 + X9+ 23+ Ty + 5+ x(;).

Here is a comparison of f(x) versus £(x) on ten randomly chosen xs:

X f(x) 1(x)

000111 -1 -0.15625
011011 -1 -0.71875
011011 -1 -0.71875
101100 -1 -0.15625
011101 -1 -0.71875
010010 +1 0.40625
101011 -1 -0.71875
110101 -1 -0.71875
010100 +1 0.40625
001001 +1 0.40625

The empirical square error > (f(x) — £(x))? is about 2.877, or less than 30% per run. Among all linear functions,
the one that we chose minimizes this error when averaged over all 64 possible inputs x. There is again a formula for
the error: X . .

average of (f(x) — £(x))? =1~ f(2)* - f({1})* —--- = f({6})*.
In our example this is about 0.499. The empirical estimate of 30% was optimistic but not by much. A 50% error for
a linear approximation of a degree-6 +1-valued polynomial is not too bad!

In general, the degree-d approximation of a function f that minimizes the mean-squared error is always the sum
of the first d Fourier levels > :18]<d f (S) parityg. This follows from orthogonality of the parities. Just like adding
terms to the spectral decomposition of gave successively better approximations of a matrix, taking higher degree
terms in the Fourier decomposition of a function also improves the approximation. The Fourier representation is in
fact a special case of spectral decomposition.

For a general function f, the mean-square error of the degree-d approximation equals

(average of f(x)?) — Z f(9)2.
s:|S|<d

When d equals n, there is no approximation error, and we obtain Parseval’s identity

average of f(x)* = Zf(S)Q (7)
g

For a #+1 valued function f, f(x)? always equals one and the squared Fourier coefficients add up to one.

One weakness of polynomial degree as a measure of complexity is that dense parity functions, such as the parity
of all the bits, do not qualify as simple. This is contrary to experience as parities are easy to compute in practice.
But they are generally challenging to handle by “analytic” algorithms like gradient descent.



3 The modular Fourier transform

The Fourier transform for functions on the Boolean cube is sometimes useful for reasoning about computational
processes but hasn’t found much applications outside of theory. There is another type of Fourier transform whose
significance is indisputable.

The Fourier transform of a Boolean function f with a one-bit input (n =1, N = 2 in the notation of Section 1)

) S+ (=)
2

f@)=fO) + f(Wz,  f0) = =>=——, f(1)=

I snuck in a change of notation here: Instead of indexing the Fourier coefficients by the sets @ and {1}, I used the
numbers 0 and 1.

One important feature of the parity basis 1 = (1,1) and « = (1, —1) is that it is not only orthogonal as a basis of
functions, but it is also a group: The pointwise product of two basis functions is a basis function. The multiplication
table for 1 and x looks like this:

1 =z
111 =z
z |z 1

This is precisely the same as the multplication rule for the numbers +1 and —1:

[ +1 -1
+1[+1 -1 (8)
1| -1 +1

The monomials 1 and x in the Fourier representation “play the same role” as the values +1 and —1 that we represent
bits by.

How does this reasoning generalize to functions that take three input values, i.e., trits? Let’s name these trits
wo, wi, and ws. We want to represent functions f over domain {wg, w1, w2} by polynomials. By dimension-counting
f should have three “degrees of freedom”, suggesting a quadratic representation

fz) = f(0) + f(D)z + f(2)2”. (9)

How should the multiplication table of 1, x, and 22 look like? In analogy to the bit setting, they should multiply
exactly like the corresponding numbers wp, w,ws. Can we make up a “multiplication table” like (8) out of some three
numbers wp, w1, ws? A moment’s thought should convince you that this is quite challenging. It is in fact impossible
if we insist on using real numbers.

There is a beautiful solution with complex numbers. Associate the monomial 7 by the complex root of unity
wj = e¥™/3 = cos(2mj/3) + isin(27j/3). These can be genuinely multiplied:

‘ Wo W1 w2
Wo | Wo W1 W2
Wiy | W1 W2 W
Wz | W2 Wo W1

Geometrically, the monomials 1, z, 22 are now represented by the complex basis vectors

1 1 1 1 1 1 1
1= lwy| =11 z= |w| = @27”/3 1-2 = |wy| = e47r’L/3 _ 647”/3
Wi 1 w? edmi/3 w2 S7i/3 27i/3

If we take the “dot product” of  and z? naively we would get the result 1 -1+ wjws + w?w3 = 3 so it appears that
we lost orthogonality. The issue is not with orthogonality but with the definition of dot product for vectors with
complex entries. When calculating a - b we need to conjugate the entries of b before evaluating the sum of products.

a-b=(a,an) (b, ) = arby + -+ anb.

Under this correct definition of complex dot product you can verify that 1, z, and 22 are orthogonal, and each has
squared length 3.



In summary, the Fourier transform modulo 3 is defined for complex-valued functions f over the third roots
of unity {1,e?7/3 e4m/3Y e, f:{1,e>7/3 e4™/31 5 C. These functions have a unique quadratic polynomial
representation (9). In analogy to (5), the Fourier coefficients f(0), f(1), f(2) are

f(j) = average of (f fo) = average of (f-277) = Z(f(1)- 1+ f(e2™/3) . e72mii/3 4 f(eAmi/3) . 6_47”7/3).

Wl =

It is convenient to give the name w to the “primitive” root of unity e27%/3.

{1,w,w?} and its Fourier transform is

In this notation, the domain of f is

o1 » N
fG) = g(f(l) + fww™ + f(?)w™ ).
These formulas generalize to arbitrary modulus N > 2. We set w to €*™/N. Functions f: Lw,...,o¥N 1} = C

have a unique degree-(N — 1) polynomial representation

f@) = FO) + f(z + -+ f(N = 1)V (10)

with the Fourier coefficients given by

N—-1
i) = % > fwh)w ™ = average value of (f(x)x). (11)
k=0

The basis functions 27 = (1,w’,w? - - ,wN=1)j ) are orthogonal as vectors under the complex dot product. Their
role is analogous to that of the parity functions parityq in the Fourier transform over the Boolean cube. The
size of S corresponds to the magnitude of j: The zeroth coefficient f (0) is the average value of f, which is the best
approximation among all constants ¢ with respect to the average of | f(2) —c|2. The first-level truncation f(0)+ f(1)x

is the best approximation among all linear functions ¢(x) with respect to the average of |f(x) — ¢(x)|?, and so on.

4 The Fast Fourier Transform

Calculating the modular Fourier representation with formula (11) takes time quadratic in N, just like for the Fourier-
Walsh transform over the Boolean cube. Again, there is a faster algorithm, provided IV is a power of two. The strategy
is to separately calculate the even and odd coefficients in (10). To be specific, let’s take N = 8. Then f can be split
into even and odd powers:

f@) = (f(0) + f(2)2 + f(4)a* + f(6)2°) + (F()z + F(3)a® + f(5)2° + f(7)a7).

Those parts are the respective polynomial representations of (f(z) + f(—z))/2 and (f(z) — f(—=x))/2:

W = f(0) + f(2)2® + f(4)z* + f(6)a®
M = f(Wz+ f(3)2® + f(5)2° + f(T)a"

[(3)2° + f(5)2° + f(
= 2(f(1) + f3)a® + f(5)z* + f(7)%).
This suggests setting up the functions

f(@) + f(==)

5 and fo(z?) = =2 2 (12)

f+($2) =

calculating their polynomial expansions recursively, and adding up the resulting polynomials.

As z ranges over the 8-th complex roots of unity e2™*7/8 22 ranges over the 4-th roots e>7%/4

and f_ must therefore have the intended Fourier expansions even modulo 4, namely

Fely) = F0) + F(2y + f(y* + f(6)y®,  or fr(j) = f(2))
f-) = F)+ fB)y+ fB)y* + f(TDy®, or f(j) = f(2 +1).

. The functions f



Conversely,
P f+(3'/2), if j/ is even,
13
@)= {f (' =1)/2), if 4 is odd. (13)

Algorithm FFT (The Fast Fourier Transform)

Input: N (a power of two) and the list f(1), f(w),..., f(wN71).

1 If N =1, output the value f(1).

Set w = e2™/N

Calculate the list representations of f, f_: {1,w? w?,...,w*V =D} — C using (12).
Calculate f, = FFT(N/2, f) and f_ = FFT(N/2, f_).

Construct f: {0,...,N —1} — C using (13) and output it.

T W N

The FFT algorithm calculates the Fourier transform of f using O(N log N) operations with complex numbers
(additions, subtractions, and scalings).

Example Let N = 4. The fourth roots of unity are 1, w = i, w? = —1 and w® = —i. Let’s take the function f
over domain {1,i, —1, —i} whose list representation is f(1) =1, f(i) =0, f(—1) = =2, f(—i) = 1. We want to derive
the polynomial representation

FO)+ F(D)a+ f(2)a” + f(3)
= (f(0) + f(2)2®) + a(f(1) + f(3)2*)

Fi(@®) +af-(2?), (14)
where f1(y) and f_(y) are functions over the second roots of unity 1 and —1. Their list representations are calculated
in line 3 as

f(z)

fo=WHIED g =10 IED g
f+(_1)zwz.5 f,(—l):%if(_i):fn’.

Even though f was real-valued, f_ is complex-valued.
In step 4 the FFT algorithm recursively calculates the polynomial representations of fi and f_. As the domain
of these functions is —1,1 the outcome is the same as for the Fourier-Walsh transform and the representations are

fily) = =5y,  f-(y) = (754 .250) + (.75 — .25) - y

Finally, in step 5 these representations are plugged into (14) to obtain the polynomial representation of f:

f(z) = =522 + 2 ((.75 + .251) + (.75 — .25i) - 2?)
= (.75 +.25i) - @ — .5 - 2% + (.75 — .257) - 2°

or f(0) =0, f(1) =.75+.25i, f(2) = —.5, f(3) = .75 — .25i.

5 Variants

The Cosine Transform

In signal processing applications, the function f(w') might represent a signal like the amplitude of a sound sampled
at times ¢t =0, 1, up to N — 1:

signal at time t = f(w') = f(O) + f(l)wt I f(N _ 1)wt(N71)’ w = e2mi/n.

There are two annoyances with this representation. First, even though the signal is real-valued, the Fourier coefficients
and the basis functions are complex. Second, the function f(w') is periodic modulo n, but signals like sound waves
are not naturally periodic. It is likely that there will be a discontinuity when the signal wraps around from ¢t = N —1
tot = N =0 (see Figure 2). Discontinuities create unnatural artifacts in the Fourier expansion.


https://en.wikipedia.org/wiki/Gibbs_phenomenon

_
]
7 0
8 11
FIGURE 2: The cosine transform. (a) Evaluations of f(e?™*/!2), ¢ = 0,...,11. The signal

exhibits a discontinuity as it wraps from ¢ = 11 to t = 12 = 0. (b) g is obtained by
concatenating f with its mirror image and shifting it so that it is symmetric about the real
axis. The discontinuities are smoothed out and g is symmetric with respect to complex

conjugation (¢(T) = g(x)).

There is a beautiful trick that eliminates both problems. Before taking its Fourier transform, concatenate the
signal with its mirror image (see Figure 2). All the Fourier coefficients become real, and all basis functions reduce
to their real part, which is a vector of cosines:

. . it . 3t . 2N — 1)nt
g(w") =2g(0) +44(1) - cos(ﬁ> +4g(1) - cos(ﬁ) +---+46(N-1)- COS((T))’
where w = ¢™/2N and t is odd modulo 4N. The index j in §(j) represents the frequency of the corresponding cosine
wave (see Figure 3). The low-frequency parts (small js) capture the stable part of the signal, while the high-frequency
ones (large js) capture the oscillating part.

fa(x)

FIGURE 3: The basis functions (a) g1 (w') = cos(7t/2N) and (b) ga(w') = cos(27t/2N).

Two-dimensional transforms

There are Fourier transforms that apply to two and more-dimensional signals like images. They are constructed by
taking the “product” of one-dimensional Fourier transfoms. Suppose we know a Fourier representation for functions
in variable x and we also know a Fourier representation for functions in y. Then functions in x and y have a unique
representation

f(x,y) = Zf(za.j)xzyj
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The embeddings of the monomials 2° - y/ are obtained by taking the outer product of the embeddings of z* and
y7 individually: the (s,t)-th entry of the vector representing z'y’ is the product of the s-th entry of z° times the
t-th entry of /. The Fourier coefficients are calculated by a formula analogous to (11): f (i,7) is the average of
f(x,y)x~y=I for x,y ranging over their respective domains.

If  and y range over the N-th and M-th roots of unity, respectively, the Fourier representation of f(z,y) has
the form

signal at position (s, t) = f(e?™s/N 2mit/My — Zf(j, k)e?mi(si/N+th/M)
3.k

with j ranging from 0 to N —1 and k ranging from 0 to M — 1. The Fourier coefficient f (4, k) is obtained by averaging
f(e?mis/N g2mit/ My o=2mi(sj/N+th/M) oyer s € {0,...,N —1} and t € {0,..., M —1}.

The Fourier-Walsh transform over the Boolean cube {—1,1}" is compatible with this construction: It is the n-th
power of the Fourier transform for functions on a single bit {—1,1}.

Continuous transforms

It is sometimes useful to think of the signal as a continuous function. The amplitude of a sound wave can in principle
be measured at any continuous instant t. Discrete-time approximations that are amenable to data processing can be
obtained by sampling the signal at regularly spaced points. The more frequent the sampling, the more precise the
approximation is. We would expect the same to be true for its Fourier transform.

Indeed, as N gets larger and larger, the Fourier transform modulo N approaches a continuous Fourier transform.
Its inputs are functions f that take values on the continuous unit circle. Any “reasonable” f of this type can be
expanded as a possibly infinite Fourier series f(w) = > f (j)w?. Here w denotes any point on the complex unit circle
and j ranges over all integers. The Fourier coefficient f () is the average of f(w)w™/ with w sampled uniformly from
the unit circle.

Continuous Fourier representations are insightful for understanding properties like sensitivity to continuous noise:
By how much does the value of f change typically if its input is perturbed by a small amount? Just like for functions
over the Boolean cube, the higher frequency terms in the Fourier expansion yield more precise but also more complex
approximations of f.

For “standard” mathematical functions f like the pulse and the Gaussian curve the Fourier coefficients can be
calculated exactly via integration, often leading to insightful infinite series representations.

6 Quantum Fourier sampling

A quantum computer is an imaginary computational device. It is believed that if one is ever built, it will be dra-
matically more effective than any existing, classical computer for certain types of problems. Much of this excitement
comes from the conjectured ability of quantum computers to “perform” Fourier transforms exponentially faster than
classical computers can.

The Fast Fourier Transform algorithm is already very efficient. It computes a Fourier Transform of a function
with N values in time O(N log N). Intuitively no algorithm can do better than time N because the least it needs
to do it inspect all values of f. Quantum algorithms, just like classical ones, are subject to this limitation. There is
little room for improvement in algorithms for computing the Fourier transform. (Having said that, the discovery of
a linear-time classical or quantum algorithm for the Fourier Transform would be a tremendous breakthrough!)

There is a different problem related to Fourier transforms called Fourier Sampling. The starting point is Parseval’s
identity (7). Assume f is a function whose average square value is 1. Boolean +1-valued functions are like that.
Then the squared Fourier coefficients specify a probability distribution over subsets S of {1,...,n}: Set S is picked
with probability f(S)2. For example, the distribution induced by majs is uniform over the sets {1}, {2}, {3}, and
{1,2,3}.

Fourier Sampling: Given the list representation of f, output set S with probability f (9)2.

We would still expect that to solve Fourier Sampling, a computer would have to at the least inspect all N values
of f. This is indeed the case for classical computers, but no longer true for quantum computers. The Quantum
Fourier Sampling algorithm solves the problem using log N elementary quantum steps!

It may be difficult to understand this exponential speedup without talking about quantum computers in detail
but let me give a try. The state of a classical computer is determined by the contents of its memory. A computer
with n bits of memory must be in one of the 2™ possible memory states. For example if n = 2 the possible states
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are 00, 01, 10, and 11. In contrast, a quantum computer can be in a superposition of these states. Mathematically,
a superposition is any vector of unit norm in the 4-dimensional vector space spanned by the standard basis vectors
labeled by the four memory states. These four vectors are usually written as |00), |01), |10),|11) in ket notation. In
general, a (pure) quantum state of an n-qubit quantum computer is a superposition of the 2™ standard basis states
[00---0),|00---1),]11---1).

Given a list representation of f, a quantum computer can create the quantum superposition state |s) =
L(f(++)[00) + f(—+)[10) + f(+—)|01) + f(——)[11)) in one step. This is a valid quantum state, namely a unit
vector, because its length is precisely the squared average of f. In general, the quantum computer should start in
state

- L. in 0/1 representation) (15)
|s) i > f@lein p :

ze{£1}"

Suppose it could process this state into the Fourier basis state [t) = f(2)]00)+ f({1})]10)+ f({2})]01)+ f ({1, 2})[11).
Quantum physics tells us that the desired outcome—sample S with probability f (S)2—will be achieved merely by
observing the quantum state: A measurement of a quantum state collapses it to a single (observable) outcome with
probability proportional to the square of the coefficient in front of it (the amplitude).

What remains to do is to instruct the quantum computer to move from state |s) to state |¢). By the product-ive
nature of the Fourier transform, this can be accomplished by moving every qubit independently. (In linear algebra
language, the n-dimensional Fourier transform is the n-th tensor power of the one-dimensional Fourier transform.)
When n = 1, this means transitioning from the list-of-values basis

o-f] -l

L +1 1 |+1
V2 [+ V2
The “machine language” instructions of a quantum computer are unitary transformations. These are linear trans-

formations that preserve unit length. Examples include rotations and sign flips. The desired change of basis can be
effected by a z-sign flip followed by a 45-degree rotation:

to the Fourier basis

A1)

|0) a-flip |0) 45°-rotate

—[1)

The algebraic specification of the instruction is multiplication by the Walsh-Hadamard matriz
1 [+1 +1]

V2 -1

Algorithm QFS (Quantum Fourier-Walsh Sampling)
Input: List representation of f: {£1}" — {£1}.

1  Prepare the quantum start state (15).

2 Apply H to each of the n qubits.

3  Measure the state and report the outcome.

A variant of Quantum Fourier Sampling works for the modular Fourier transform. One important application of
it is period finding. Suppose the input function f is periodic modulo some unknown number q. The period shows in
the Fourier transform of f: Most of its “weight” is concentrated around multiples of N/q, provided g is sufficiently
smaller than N. The output of Quantum Fourier Sampling on such functions is likely to be very close to some
multiple of N/q. It is possible to find a good approximation of ¢ itself from a few such samples.
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The most spectacular application of unknown period recovery is factoring. Given a product N = pq of two primes
it is possible to cook up a function that is almost periodic modulo one of the prime factors of N. Quantum Fourier
Sampling then recovers one of the prime factors of N up to some small error. In 1994 Peter Shor showed how the
error can be eliminated. His discovery dramatically raised the stakes in quantum computing because the ability to
factor efficiently would break most existing encryption infrastructure.

Despite enormous well-funded efforts since then, a quantum computer is not yet in the cards. Many scientists
believe it will one day be built. This quantum computer will be able to run the precise instructions required by
algorithms like Quantum Fourier Sampling on inputs of arbitrarily large scale.

Some researchers believe that there are fundamental obstacles forbidding the physical realization of quantum
computers. Mathematician Gil Kalai is among the most outspoken ones. His main argument is that quantum
systems are too susceptible to noise to do anything useful. How does he argue his case? You guessed it—the proof
is in the Fourier Transform.
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