CSI 4103 / 5138: Great Algorithms Lecture 6
University of Ottawa, Fall 2025

Alice, Bob, and Charlie want to know who is the richest of them all. They could announce their net
worth in public. That may arouse unwanted suspicion from scammers or the tax authorities. Alternatively,
they could ask their trusted friend Jimmy to arbitrate. Alice, Bob, and Charlie each secretly tell Jimmy
their net worth. Jimmy then announces the identity of the richest person.

Trusted entities like Jimmy perform many important functions in society. Auditors verify the compli-
ance of companies with tax laws without revealing their internal secrets. Banks certify the solvency of
their customers while ensuring that their money doesn’t disappear. Election officials guarantee that all
votes are counted yet voters’ preferences remain secret.

What happens when the trusted party is a crook? Societies have financial and legal incentives that are
meant to prevent large-scale breaches of trust. As we all know well these incentives are far from perfect.
Corruption of persons and institutions that are meant to be trusted happens everywhere.

In the 1980s cryptographers came up with a novel perspective on trust. Their premise was that
processes like audits, bank transactions, and elections are computations of a special kind. They involve
multiple entities with competing interests. In a bank transaction the computation entails consistently
updating the customer’s and the bank’s ledger. Consistency is important for both the customer and the
bank to not have their money stolen. In an audit, the output of the computation might be the amount of
tax that the company owes the government. In addition to ensuring that taxation was fair, the company
may want to avoid revealing extraneous information like its suppliers or customers. In an election, what
is being computed is the vote tally. Voters want their votes to be counted but their preferences to remain
anonymous.

A secure multiparty computation is a jointly executed algorithm whose outcome is “indistinguishable”
from what it would be had the computation been performed by a trusted party. To understand what this
means let’s go back to Alice, Bob, and Charlie. Their respective inputs are their net fortunes x, y, and z.
The output f(x,y, z) should identify the richest person, namely

Alice, if x >y, 2,
f(z,y,z) = < Bob, ify >z, x,
Charlie, if z > x,y.

This is the “argmax” function. Trusted Jimmy would collect Alice’s, Bob’s, and Charlie’s input and
announce the winner without revealing any extraneous information as in Figure 1 (a).

10 15 3
Alice 10 — ©
777777777777777 g 100 o —3— &
Bob 15— Jimmy +—— Bob = =z §
*************** < & Bob — — Bob— O
Charlie 3 —
Bob Bob Bob

FIGURE 1: Joint computation of f = argmax. (a) Computation by a trusted party: Alice,
Bob, and Charlie find out nothing beyond the value f(x,y,z). (b) In a joint computation,
they should come up with the same output f(x,y, z). This implementation is insecure because
Bob finds out everyone’s net worth.

In a multiparty computation, Jimmy is replaced by algorithms through which Alice, Bob, and Charlie
exchange messages. These algorithms must be functional: The output produced by Alice, Bob, and Charlie

at the end of the interaction must be the same as that produced by Jimmy in the trusted party setting.
Functionality by itself is not difficult to satisfy. Bob, for example, could take up Jimmy’s trusted party
role, perform the computation himself, and forward the output to Alice and Charlie, as in Figure 1 (b).

This algorithm is not “secure”. Bob learns not only who is the richest among the three but also finds
out Alice’s and Charlie’s net worth. A secure multiparty computation eliminates this unintended disclosure
of information. Alice’s, Bob’s, and Charlie’s algorithms will ensure that Bob learns nothing about Alice’s
and Charlie’s input except what is implied by the value of his output, namely that his input y is larger
than both of theirs x and z. The same will be true for Alice and Charlie.

There are several algorithms for secure multiparty computation. The one we will describe was discovered
independently by Ben-Or, Goldwasser, and Wigderson, and Chaum, Crépeau, and Damgard in 1988. In
this algorithm Alice, Bob, and Charlie “share” their inputs and then cooperatively evaluate f step by step
on their shares. Let’s start with the sharing.

1 Secret sharing

A secret sharing scheme is a mechanism by which a dealer distributes a secret piece of information among
several parties so that the secret can be reconstructed, but subsets of parties learn no information about
the secret.

Before we define the concept let us give an example. Suppose the secret information consists of a single
bit s € {0,1} that the dealer Dave wants to split among the parties Alice, Bob, and Charlie. Dave samples
shares X 4, Xp, X¢ for the three parties as follows:

if s =0, sample X4 XpXc uniformly from {000,011,101,110}
if s =1, sample X4 XpX¢ uniformly from {111, 100,010,001}.

After sampling Dave communicates the shares X4, Xp, X¢ to Alice, Bob, and Charlie through secret
channels. If the three of them get together they can reconstruct the secret uniquely from the shares: s is
the XOR of X4, Xp, and X¢. On the other hand, Alice learns nothing about the secret: Her share X 4
is a random bit (0 with probability half and 1 with probability half) that does not depend on the value of
s. By observing X 4 in isolation, Alice finds out nothing about the secret. The same is true for Bob and
Charlie.

More is true: If Alice and Bob get together, they also find out nothing about the secret. The pair of
bits X4 Xp that they observe jointly is equally likely to match each of the four outcomes {00, 01,10, 11},
regardless of the value of the secret. The same is true for any two out of the three parties. This example
illustrates an important principle: Randomness is essential for hiding information.

In general, a complete secret sharing scheme is a pair of algorithms: A sharing algorithm Share and a
reconstruction algorithm Reconstruct where

e Share that takes a secret s as input and outputs randomized shares X 4, X5, ..., X, one per party
e Reconstruct that takes shares X 4, Xpg,..., X¢ as inputs and outputs a secret.

A secret sharing scheme is functional if reconstruction always works: Reconstruct(Share(s)) = s. The
scheme we just described is clearly functional. The reconstruction algorithm is X4 XOR Xp XOR X, and
this always equals the secret s.

Functionality by itself can be achieved in many ways. Dave could simply reveal s to Alice, Bob, and
Charlie. Then there is no secrecy. To specify secrecy we need another definition.

Definition 1. A complete secret sharing scheme is secure if for every proper subset S of parties and for
every two secrets s, s’ the random variable sequences (X;: i € S) and (X/: ¢ € S) are identically distributed,
where (X4, Xp,...,X¢) and (X!, X,..., X(,) are the outputs of Share(s) and Share(s’), respectively.

The notation (X;: i € S) stands for the sequence of random variables indexed by elements of S under
some fixed ordering of S. For example, (X;: i € {2,3,5}) = X2 X3X5.

In our bit sharing example there are only two possible secrets: the bits s = 0 and s’ = 1. Let’s call
the corresponding shares X4 XpXc and X/, X X[, respectively. X4 and X, are identically distributed
because they are both random bits. So are Xp and ng, as well as X and Xé. Moreover, X 4 Xp is
identically distributed to X', X;: They are both pairs of random bits, equally likely to take the four values
00, 01, 10, and 11. So are X4 X¢ and X/, X/, as well as Xp X and X X(.. This covers all proper subsets
of parties (except the empty set for which the claim is vacuous), so our scheme is secure.

Security implies that no proper subset of parties can reconstruct the secret. Since their joint shares
are identically distributed, any “reconstruction” algorithm that Alice and Bob apply on their joint shares
produces the same distribution of outcomes when the secret is 0 as when the secret is 1. In particular, their
algorithm cannot reliably output 0 in the former case 1 in the latter case. The outcomes 0 and 1 must have
the same probability in both cases. Not only can Alice and Bob not reconstruct the secret completely;
they cannot even guess its value with probability exceeding 50% (in the absence of prior information).

It is not hard to generalize this construction to n parties. The sharing algorithm Share(s) outputs
random bits X1,..., X, conditioned on X; +---+ X,, = s (mod 2). Share X; is given to party i. The
reconstruction algorithm XORs all the shares. This scheme is both functional and secure.

Now that we have a scheme for single-bit secrets for any number of parties, he can obtain one for
multi-bit secrets by applying it independently to every bit. This multi-bit scheme will inherit the security
from the single-bit one. It can be used to secretly share arbitrary pieces of information.

Threshold secret sharing

A client can use this scheme to store a k-bit file on a collection of n > 2 servers with the following guarantee.
No proper subset of the servers obtains any information about the file, but the client can reconstruct the
file after communicating with all the servers. What if some of the servers break down? It may be desirable
that the client can still reconstruct her file from the surviving ones. A solution that comes to mind is a
variant of secret sharing in which not all n parties are required participate in the reconstruction, but some
lower threshold r is sufficient.

To account for this generalization, we need to change the syntax and the relevant requirements. The
reconstruction algorithm now takes two inputs: A subset R consisting of at least r parties, and their
respective shares (X;: i € R). Functionality should hold for all such subsets R, not merely for the complete
set of parties. The functionality requrement for r-out-of-n secret sharing is

Reconstruct(R, X;: i € R) = s for every set R of size r whenever Share(s) outputs X1, ..., X,.
As any r parties can now reconstruct the secret, we can only hope for secrecy against smaller sets.

Definition 2. A r-out-of-n secret sharing scheme is secure if it satisfies Definition 1 but only when applied
to subsets S of size less than 7.

Now that we have the definitions in place we can describe a solution that meets all requirements.

2 Shamir’s secret sharing

In 1979 Shamir came up with a secret sharing scheme for any number of parties n and any value of the
threshold r (in the range 1 to n).

In Shamir’s scheme, both the secret and the shares are not bits but elements of a finite field F,. A finite
field is a finite number structure that admits addition, subtraction, multiplication, and division (except by
zero). One important example is arithmetic modulo ¢ when ¢ is a prime number. More generally, a finite
field of size ¢ exists (and is unique) whenever ¢ is the power of a prime number. Arithmetic in these prime

power fields is somewhat more complicated. In our discussion we’ll assume that the “alphabet size” ¢ is a
prime number and all arithmetic is modulo q.

As our first example let’s take » = 2 and n = 4. We will identify the four parties with the numbers 1,
2, 3 and 4 modulo ¢ = 5. A line ¢ is a function of the type ¢(x) = b+ ax modulo g.

To share the secret s, Dave picks a random line ¢ passing through s at 0, i.e. conditioned on £(0) = s,
uniformly at random among all such lines. Party ¢ is then given the share Y; = £(i). As ¢(0) = s the line
must have the form ¢(z) = ax + s. There are five such lines: s, s+, s + 2z, s + 3z, and s + 4z. If s =2
and Dave had picked the line 2 + 3x among these five, then the share values would be Y7 = 0, Y5 = 3,
Y3 =1, and Yy = 4 (see Figure 2 (a)).

0

0 0

FIGURE 2: Shamir secret sharing for n = 4 parties over F5. Example shares with secret s = 2
and threshold (a) r =2 (b) r = 3.

To reconstruct the secret, any two parties can uniquely interpolate a line ¢ though their shares (,Y;)
and (j,Y;). They can find this line by solving the equations ¢(i) = Y; and ¢(j) = Y;. For examples, if
parties 2 and 4 have shares Yo = 3 and Y, = 4 as in Figure 2 (a), Dave’s line ¢(z) = s + ax must satisfy

s+a-2=3 and
s+a-4=4.

This is a system in two equations and two unknowns modulo 5. It solves uniquely to a = 3 and s = 2, so
the line must be ¢(z) = 2 + 3z and the secret must be s = 2.

The share Y; of any individual party ¢, on the other hand, is the evaluation of the random line ¢ passing
through (0,s) at i: ¥; = s+ a-i. In a finite field, both multiplication and addition by a fixed number
permute the field elements. As a is equally likely to equal any of the five, so are a -7 and s+ a - i, regardless
of the value of the secret s. Therefore Y; is identically distributed—in fact, uniformly random—for any
pair of secrets. The scheme is secure.

What happens if the reconstruction threshold is » = 37 Now instead of a line, Dave samples a quadratic
p(z) = s + a1z + agz? with random field elements ay, as (see Figure 2 (b)). Reconstruction by any three
parties now entails solving a system of three equations in three unknowns. For example, if parties 1, 2 and
4 wanted to reconstruct from their shares in Figure 2 (b) they would be solving the system

s+a;+ax=0

s+a-2+ay-2°=0

s+a1-4+a2-42:1
obtaining the solution a; = 2, as = 1, and s = 2. We will prove shortly that the solution to this type of
system is always unique. As for secrecy, it turns out that the pair of shares (Y;,Y;) given to every pair of

parties i # j is equally likely to take up any of the 52 possible pairs of values modulo 5, regardless of the
secret. Thus pairs of shares are identically distributed and the scheme is secure.

Shamir Secret Sharing for n parties and threshold 7.

Algorithm Share:

Input: A secret s in the finite field F,, where ¢ > n.

1 Sample a random polynomial p of degree at most r — 1 over [, conditioned on p(0) = s.
2 For every i from 1 to n:

3 Send share Y; = p(i) to party i.

Algorithm Reconstruct:

Input: A subset R of size r and shares Y;: i € R.

1 Find a polynomial p of degree at most r — 1 such that p(i) =Y for all i € R.
2 Output p(0).

In step 1 of Share, the polynomial p can be sample by choosing independent random coefficients
ai,...,ar—1 in F, and setting p to equal p(z) = s+ a1z + asx® + -+ ar_12" 1. As there are ¢ choices for
each coefficient, there are ¢"~! possible polynomials.

Theorem 3. Shamir’s r-out-of-n Secret Sharing Scheme is functional and secure assuming q > n.
These properties rely on two key facts about polynomials:
Fact 4. A nonzero degree-d polynomial over a field can have at most d zeros.

Fact 5. For every set R of r inputs and every r outputs y;, one for each i € R, there is a unique polynomial
p of degree at most r — 1 for which p(i) = y; for all i € R.

Proof of Theorem 3. A polynomial p of degree d — 1 satisfying the reconstruction constraints p(i) = Y; for
all i € R must exist because p is such a polynomial. Fact 5 says that this p is unique, so p and p must be
the same polynomial. In particular p(0) = p(0) = s.

For security, we will show that for every secret s, the shares Y;: ¢ € S are equally likely to take any one
of the ¢"~! possible (r — 1)-tuples of field values. In particular, the shares resulting from any two secrets
are identically distributed.

The parties in S observe the values Y; = p(i) for all i € S, where p is a random degree-(r— 1) polynomial
subject to p(0) = s. By Fact 5, there is exactly one choice of p that satisfies the conditions p(0) = s and
p(i) = Y; for all i € S. As there are ¢"~! choices for (ai,...,a,_1), each possible tuple of values is taken
with the same probability 1/¢" . O

One implementation detail we did not specify is how to find the polynomial p in step 1 of Reconstruct.
This is a system of modular linear equations. It can be solved by Gaussian elimination. Recall that this
entails about O(rn?) arithmetic operations. The reconstruction algorithm, however, doesn’t really need to
know a; up to a,—;. It only cares for the constant coefficient s = p(0) = p(0).

The Lagrange interpolation formula gives a more direct and faster way to find p(0) from p(i) for i € R.
It says that for every degree-(r — 1) polynomial p, and every set R of r field elements,

: J
o) =Y00) T] - (1)
ierR jemr{i}?
We'll see it in action shortly. It can be used to implement reconstruction like this:

Algorithm Reconstruct:
Input: A subset R of size r and shares Y;: i € R.

https://en.wikipedia.org/wiki/Lagrange_polynomial

Proof of Fact /J. If p has degree d and p(b) equals zero then p(z) = p(z) — p(b) has the form a;(x — b) +
az(z? —b?) + - -+ ag(x? — b?). As x — b factors into all the terms, p itself can be written as (z — b) times a
lower degree polynomial. If p has more than d zeros and we repeat this argument more than d times, we
obtain the absurd conclusion that one of the factors of p has degree less than zero. O

Proof of Fact 5. The following polynomial has degree at most r — 1 and evaluates to y; at ¢ for every i € R:

) =Sy I =L

. 4 L t=J
i€R jeR\{i}

The product terms are set up so that only the i-th term survives (and evaluates to y;) when x = i and all
the others vanish. The degree is at most r — 1 because each product has r — 1 factors. (Formula (1) is the
special case when x = 0.)

It is unique because if there were two such polynomials then their difference would also have degree at
most 7 — 1 and would evaluate to zero on all of R. By Fact 4 this is impossible. O

3 Secure multiparty computation

In a secure multiparty computation, several parties want to perform a joint computation on their private
inputs without revealing any information. Let’s consider the case of three parties Alice, Bob, and Charlie.
Unlike for secret sharing, there are several reasonable definitions of security for multiparty computation.
We will focus on this one:

After participating in the joint computation, no party (Alice, Bob, or Charlie) finds out any
new information about the other two’s inputs, beyond what is implied by its own output.

Suppose that in the joint computation of f = argmax, Bob submitted input 5 and it was announced that
f(x,5,y) = Charlie. From this Bob can deduce that y > 5 and y > x. The requirement is that he can
deduce nothing else.

To make sense of this definition, it is helpful to compare two potential runs of the joint computation
of f = argmax. In both runs we insist that Bob’s input remains the same but Alice’s and Charlie’s may
change. Suppose in the first run, the three parties’ inputs are (3,5,8). In the second run, the inputs
are (7,5,9). Both outputs are f(3,5,8) = f(7,5,9) = Charlie. In the absence of prior knowledge, after
engaging in the computation, Bob should conclude that Alice’s and Charlie’s inputs are equally likely to
have been (3,8), (7,9), or any two values (z,y) for which f(z,5,y) = Charlie.

The phrase “Bob should conclude” has a precise mathematical meaning. The view of Bob is the
collection of random variables consisting of his randomness and the sequence of all the messages he receives
from Alice and Charlie.

Definition 6. A joint computation is secure against Bob if for every pair of executions in which Bob’s input
and output are the same (but Alice’s and Charlie’s inputs may be different), Bob’s views are identically
distributed. The joint computation is secure if it is secure against all of Alice, Bob, and Charlie.

The BGW algorithm assumes the availability of authenticated and secure communication infrastructure.
Specifically, any two parties have a dedicated channel that is private (the other parties obtain no information
except that communication occurred) and authenticated (they can be sure that they are talking to one
another).

Let’s first discuss the special but important case in which Bob wants to privately calculate the sum of
Alice’s input « and Charlie’s input z. (Alice and Charlie calculate nothing.) To do this, Alice and Charlie
first jointly sample a random element r from IF,. Alice sends Bob the value z +r, Charlie sends Bob z — 7,
and Bob outputs the sum of the two messages. Alice’s and Charlie’s views consist of a single random
number so the algorithm is secure against them. Bob observes two random numbers that add up to his

output. The algorithm is secure because the joint distribution of these two numbers only depends on his
output and not on Alice’s and Charlie’s input (see Figure 3).

Procedure ThreeSum
Private Inputs x € [F, for Alice and z € IF, for Charlie.
1 Alice chooses a random 7 in F, and shares it with Charlie.
2 Alice sends 2’ = 2 + r to Bob.
Charlie sends 2z’ = z — r to Bob.
3 Bob privately outputs 2’ + 2.

1 3 2 2

o o
.g % 3 — T:G ,§ % 2 —> T:S
< —4— B 00— 5 < —a4—f B —0—4 &5

! !
4 4

FIGURE 3: Security of ThreeSum. The field is F5. In the two executions, Bob’s output is
the same but Alice’s and Charlie’s inputs differ. The probability that Bob’s view equals (4, 0)
is 1/5 in both executions.

4 The BGW algorithm

The Ben-Or, Goldwasser, Wigderson (BGW) algorithm takes as its input a representation of f(x,y, z) as
an arithmetic circuit. This is a circuit with addition gates that take an arbitrary number of inputs and
multiplication gates that take two inputs. It outputs instructions for a secure multiparty computation of
f by Alice, Bob, and Charlie on their private inputs z, y, and z.

The arithmetic circuit operates over a finite field that is suitably large to allow Shamir Secret Sharing
among Alice, Bob, and Charlie. The circuit can have any number of inputs, but these are partitioned among
Alice (the z-inputs), Bob (the y-inputs), and Charlie (the z-inputs). Efficiently computable functions like
argmax have reasonably small representations by arithmetic circuits.

The BGW algorithm consists of three phases. In the setup phase, secret shares of each party’s inputs
are distributed to the other parties. In the computation phase, parties compute shares representing the
values at all the wires in the order of circuit evaluation. In the reconstruction phase, the shares representing
the output wire(s) are combined to obtain the desired output(s).

The underlying secret sharing scheme is Shamir’s with 3 parties and reconstruction threshold 2. We’ll
work over the field F5 (numbers modulo 5). Alice’s, Bob’s, and Charlie’s shares are the values £(1), ¢(2),
and £(3), where ¢ is a random linear function conditioned on the secret being ¢(0), i.e., the function
0(t) = secret + rt for a random r. No party has any information about the secret, but any two can
reconstruct it.

In the setup phase each party shares their input via this scheme. For example Alice sends the values
x4+ 7, x+ 2r, and z + 3r to herself, Bob, and Charlie, respectively, for each of her inputs z. In the
reconstruction phase, the output(s) are reconstructed from their share(s). For example, Alice can uniquely
determine her output from hers and Bob’s shares of it.

It remains to describe the computation phase. Suppose Alice, Bob, and Charlie want to evaluate the
shares representing the output of a plus gate p(0) + ¢(0). Each party knows their share p(¢) of p(0) and
q(t) of q(0). Each declares p(t) + ¢(t) to be their share of the output p(0) + ¢(0). As p and ¢ are linear

functions, so is p + ¢ and each party ends up with a valid share for the output. This step doesn’t involve
communication so it preserves security.

In the case of a times gate p(0) - ¢(0), each party multiplies its shares p(t) and ¢(t). If p and ¢ are linear
functions describing the parties shares, then v = pq is a quadratic polynomial whose value at zero equals
the gate output p(0) - ¢(0). The values v(1), v(2), and v(3) still uniquely specify the desired output v(0).
Reconstruction is in principle possible if all three parties participate.

However, shares can be multiplied only once. Any subsequent multiplication would result in a cubic
(or higher degree) representation of the gate value by its shares and reconstruction would no longer be
possible. To overcome this issue, the BGW algorithm applies an interactive degree reduction procedure
after every multiplication.

Degree reduction

The inputs to degree reduction are shares v(1), v(2), and v(3) of the secret value v(0) specified by a
quadratic polynomial v. The outputs are 2-out-of-3 Shamir secret shares of v(0), namely evaluations
0(1), £(2), and £(3) of a linear function ¢ that is random conditioned on ¢(0) = v(0) (and independent of
everything else). Each party should learn nothing other than its new share £(i). As each individual share
is independent of the secret, no information will be leaked.

The starting point of degree reduction is the relation between the secret v(0) and the quadratic shares
v(1), v(2), and v(3) given by the Lagrange interpolation formula (1):

2-3 1-3 1-2

v(3) =3v(1) +2v(2) +v(3). (2)
Even though v is a quadratic polynomial, the secret is a linear function of the shares. (For example, the
shares in Figure 2 (b) satisfy (2).) Alice, Bob, and Charlie want to re-share v(0), but without entrusting
it to a dealer. How can they do that?

Let’s consider Alice’s perspective. Alice’s output £(1) should be a random value r in F5. The main
insight is that this r, together with the quadratic shares v(1), v(2), v(3), determines the remaining two
linear shares ¢(2) and ¢(3). By (2), v(1), v(2), and v(3) determine v(0). But v(0) and r then determine ¢
because there is a unique line that passes through (0,v(0)) and (1,v(1)), namely the line

0t) =1 —=t)v0)+tr=3(1—-t)v(l)+tr)+2(1 —t)v(2) + (1 —t)v(3).
Specifically, Bob’s and Charlie’s new shares £(2) and ¢(3) are linear combinations of r, v(1), v(2), and v(3):

0(2) = (2r +2v(1)) + 3v(2) + 4v(3)

£(3) = (3r + 4v(1)) + v(2) + 3v(3). (3)

These can be communicated securely using the ThreeSum algorithm.

Procedure ReduceDegree
Private Inputs Shares v(1) for Alice, v(2) for Bob, v(3) for Charlie satisfying (2).
1 Alice chooses a random r in Fs.

2 Alice replaces her share v(1) by a random element r of IF,.

3 Alice and Charlie communicate 2r + 2v(1) plus 4v(3) to Bob via ThreeSum.
Bob replaces his share v(2) by 3v(2) + ThreeSum/(2r 4+ 2v(1), 4v(3)).

4 Alice and Bob communicate 3r + 4v(1) plus v(2) to Charlie via ThreeSum.

Charlie replaces his share v(3) by 3v(3) + ThreeSum(3r + 4v(1),v(2)).

Bob’s and Charlie’s new shares are linear functions of the old shares of all three parties. They can
learn them (and nothing else) by running algorithm ThreeSum.

The algorithm

The BGW algorithm applies the circuit operations on the shares in forward order. Every multiplication
is followed by a degree reduction. The degree-reduction step enforces the invariant “g(1), g(2), and g¢(3)
are 2-out-of-3 shares of the output of ¢” for every gate g in the circuit. This invariant underlies the
functionality of BGW.

Algorithm BGW for three parties over Fs.
Common Input: An arithmetic circuit f with inputs partitioned among Alice, Bob, and Charlie.
Private Inputs for Alice, Bob, and Charlie in Fs.

Setup phase: For each input u,
1 The party owning u 2-out-of-3 shares it among Alice, Bob, and Charlie.

Computation phase: For each gate g in forward order of computation,
1 Each party creates a share for g by applying operation [g] to the shares of its incoming wires.
2 If g is a times gate, apply ReduceDegree to g(1), g(2), and ¢(3).

Reconstruction phase: For each output v,
1 The shares v(1),v(2),v(3) are revealed to the party/parties that owns it.
2 The party 2-out-of-3 reconstructs its value and privately outputs it.

The algorithm extends to more than three parties. If there are n parties, Shamir’s scheme with recon-
struction threshold [n/2] should be used. This ensures gate outputs are determined by their shares even
after multiplication. The n-party BGW algorithm is secure not only against individual participants, but
against any joint coalitions of fewer than n/2 of them. For example if there are 7 parties, no 3 parties
can deduce anything about the other 4 parties’ inputs beyond what is implied by their respective outputs,
even if these 3 parties collaborate.

5 Variants

One quality of the BGW algorithm is its universality. It can take an arbitrary circuit representing compu-
tation by a trusted party and compile it into a multiparty computation without one. Another feature is
its perfect security. Under security Definition 6 there is zero leakage of unintended information.

The main drawback of BGW is its communication complexity. The communication between the parties
is proportional to the circuit size of f. In common applications the inputs to f could be gigabyte-sized
databases resulting in prohibitively expensive communication. A related drawback is its round complexity.
Even if the algorithm is implemented in parallel, the number of interaction rounds would be proportional
to the depth of the circuit.

Yet another weakness is that the BGW algorithm is meaningful only for a minimum of three parties.
Many interesting functionalities involve only two parties, like a bank and a customer.

Other secure multiparty computation algorithms mitigate these shortcomings. Yao’s garbled circuit
algorithm terminates after three rounds of interaction, though its communication complexity is still pro-
portional to the size of the circuit for f. It works for as few as two parties, and is secure against coalitions
consisting of all but one of the participants.

Secure multiparty computation can also be realized using fully homomorphic encryption. The resulting
algorithm is asymmetric. In the two-party setting, the amount of communication is proportional only to
Alice’s input size; Bob’s plays no role. This can be advantageous in client-server settings where the client’s
input is typically much shorter than the server’s. Fully homomorphic encryption is difficult to implement
and still impractical at large scale.

One common weakness of these algorithms is that they are susceptible to “malicious” attacks. Security
Definition 6 assumes that all parties participating in the joint computation follow the intended algorithm.

https://andrejb.net/csci5440/notes/20L07.pdf
https://andrejb.net/csci5440/notes/20L07.pdf
https://andrejb.net/csci5440/notes/20L10.pdf

In many situations, there is nothing that prevents a party from running its own algorithm that is designed
to pry for unintended information disclosure or even derail the joint execution.

There is a variant of the BGW algorithm that is resilient even against such attacks, as long as fewer
than a third of all participants are corrupted. That variant is obtained by augmenting the algorithm we
described with “certification messages” through which each party proves that it is following the prescribed
instructions. These certifications reveal no additional information about that party’s inputs. Algorithms
that prove the validity of a statement and reveal nothing else are called zero-knowledge proofs.

10

https://andrejb.net/csci5440/notes/20L08.pdf

	Secret sharing
	Shamir's secret sharing
	Secure multiparty computation
	The BGW algorithm
	Variants

